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1. INTRODUCTION 

The increasing prevalence of renewable energy sources can be 
attributed to various factors related to climate change, energy 
needs, and energy scarcity. Photovoltaic power plants, which rely 
on solar power systems, play a crucial role in generating electricity 
on a large scale. However, these systems are often installed in 
open areas, making them susceptible to damage from severe 
weather conditions like rainstorms and gales. To address this 
challenge, the development of an accurate data-driven model is 
essential for determining the key characteristics of photovoltaic 
systems used in the solar industry. Analysing solar model 
parameters provides numerous benefits, including evaluating the 
performance of photovoltaic power plants, computing energy 

efficiency, implementing maximum power point tracking 
(MPPT), and optimizing the system's energy management [1]. 

To model solar photovoltaic systems effectively, two stages 
are required: the development of a mathematical model and 
identification of its parameters. Among the models available, the 
single-diode model (SDM) and double-diode model (DDM) are 
widely utilized [2]. However, the performance of these models 
can lose its stability and unreliable due to unspecified parameters, 
particularly if the equipment undergoes contingent aging. 
Therefore, accurate parameter estimation is an important task 
when working with photovoltaic cell models [3]. In addition, the 
optimization and installation of photovoltaic systems require 
precise modelling. Nevertheless, the PV model is non-linear and 
has a non-convex relationship, which poses several challenges 

ABSTRACT 
Accurately simulating and operating photovoltaic (PV) modules or solar cells requires determining specific model parameters based on 
experimental data. Extracting these parameters is crucial for analyzing system performance under various conditions such as 
temperature and sunlight variations. However, modeling solar photovoltaic systems is inherently nonlinear, which calls for an efficient 
algorithm. In this study, we employ the MRFO-dFDB (Manta Ray Foraging Optimization with dynamic Fitness Distance Balance) 
algorithm, which utilizes fitness distance balance to balance the exploration and exploitation of the search area when assessing 
parameters in solar PV models. By applying MRFO-dFDB to extract parameters from the STP6-120/36 and Photowatt-PWP201 solar 
modules, we observe exceptional predictive performance for both single diode (SDM) and double diode (DDM) models. MRFO-dFDB 
exhibits superior performance compared to state-of-the-art methods. It achieves lower Root-Mean-Square Error (RMSE) values, 
specifically < 15.3 mA for the STP6-120/36 module and <2.4 mA for the Photowatt-PWP201 module. Additionally, it demonstrates lower 
maximum errors of 39.02 mA and 5.33 mA, as well as lower power errors of 155.42 mW and 14.122 mW, for the STP6-120/36 and 
Photowatt-PWP201 solar modules, respectively. Furthermore, it exhibits excellent performance with faster computation speed (< 30.1 
seconds in all tests), further emphasizing its superiority. 
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and obstacles. Efforts have been made by researchers to find 
ways of accurately assessing the unknown parameters. These 
efforts have resulted in the identification of three methods: 
analytical, deterministic, and metaheuristic techniques [4]. 

The utilization of analytical methods involves the utilization 
of particular data points, such as the short-circuit point, open-
circuit point, and maximum power point found on the current-
voltage (I-V) characteristic curve under standard test conditions 
(STC). These methods are characterized by their simplicity, 
speed, and convenience, and are utilized to develop a handful of 
equations to handle the unknown parameters of the model. 
However, the accuracy of these methods is heavily reliant on the 
accuracy of the selected data points given by the manufacturers. 
If these values are incorrectly specified, it will significantly 
degrade the extraction accuracy due to the "taking a part for the 
whole" extraction strategy. Furthermore, the special data points 
utilized in these methods are factory measured under STC 
conditions, but as time passes, the model parameters may change 
due to PV degradation, further affecting the accuracy of the 
"taking a part for the whole" methods [5]-[6]. 

Deterministic techniques employ the "take all measured data 
for the entire system" strategy to extract unknown parameters. 
Accurately extracting these parameters requires a considerable 
amount of measurements [7]. These techniques rely on a loss 
function that measures the distinction between the predicted and 
measured data points. Due to their utilization of gradient 
information, deterministic methods may converge to a local 
optimal solution. 

Algorithms that rely on evolutionary principles, such as the 
evolutionary strategy algorithm (ESA) [8], differential 
evolutionary algorithm (DEA) [9], and genetic algorithm (GA) 
[10] are known as evolutionary-based algorithms. 

In contrast to deterministic methods, metaheuristic 
approaches do not rely on gradient information and avoid 
simplification or linearization during optimization. As a result, 
they have gained increasing attention as an alternative to 
deterministic methods. Various metaheuristic techniques, such as 
particle swarm optimization (PSO) [11], teaching-learning-based 
optimization (TLBO) [12], artificial bee colony (ABC) [13], 
JAYA algorithm [14], supply-demand-based optimization (SDO) 
[15], symbiotic organisms search algorithm (SOS) [16], 
imperialist competitive algorithm [17], flower pollination 
algorithm (FPA) [18], and hybrid algorithms [19]-[21], have been 
used to extract parameters from PV models. 

When it comes to modelling PV modules and cells, analogue 
electrical circuits are the preferred method for achieving 
accuracy. Photovoltaic researchers commonly utilize SDM and 
DDM modelling approaches. Simulation of single-diode cells 
and modules requires five parameters, while double-diode cells 
and modules require seven. Precise estimation of these 
parameters with an absolute minimum error between the 
calculated and measured currents is crucial to achieving precise 
simulation of the I-V physical system features. 

Existing literature has identified research gaps in the areas 
solar cell parameters identification and metaheuristic 
optimization. These shortcomings involve the use of non-
adaptive weight metrics in the metaheuristic approaches, the 
calculation speed, the risk of metaheuristic algorithms becoming 
trapped in local best optima, and the necessity to further 
minimize RMSE (root mean square error) values produced by 
most algorithms. 

To address the limitations in solar cell parameter 
identification, it is necessary to bridge the research gap. This 

paper introduces a new metaheuristic algorithm, named MRFO-
DFDB (Manta Ray Foraging Optimization with Dynamic 
Fitness Distance Balance). The algorithm utilizes fitness distance 
balance to balance both exploration and exploitation of the 
search space when estimating parameters in solar PV models. 
The fitness distance balance measure assesses population 
diversity and adjusts the exploration and exploitation parameters 
accordingly. The dynamic nature of the fitness distance balance 
enables the algorithm to adapt to changes in the search space and 
maintain an optimal balance between exploration and 
exploitation. This enables the algorithm to find the optimal solar 
PV parameters rapidly with good efficiency. 

Our algorithm demonstrates superior performance by 
achieving the lowest fitness value with minimal iterations 
compared to the WOS (War Strategy Optimization Algorithm) 
and the SFO (Sunflower Optimization Algorithm), showcasing 
its efficiency and speed. We conducted tests on two different 
modules, namely STP6-120/36 and Photowatt-PWP201, and 
compared the results to those obtained using the SFO and WOS 
algorithms. Our results validate the algorithm's robustness, 
speed, and efficiency, making it a suitable choice for estimating 
parameters for solar PV models. 

This document is structured as follows: In Section 2, we 
introduce the solar PV models used in our research, including 
the relevant equations. Section 3 provides an overview of the 
algorithm implementation steps. The implementation setup for 
the STP6-120/36 and Photowatt-PWP201 tests are reported un 
Section 4, the discussion of results is presented in Section 5. 
Finally, in Section 6, we draw the conclusion. 

2. SOLAR PV MODELLING 

This section covers the mathematical models related to solar 
PV cells and modules. 

2.1. Single-Diode Model (SDM) 

There are various equivalent circuits that can represent the I-
V characteristics of PV modules, the most commonly used and 
renowned for its simplicity and accuracy is the Single-Diode 
Model (SDM) as depicted in Figure 1 [22]. This model utilizes a 
single-diode approximation to relate the different variables, and 
it includes several parameters such as Iout (output current), Ish 
(shunt resistance current), Rs (series resistance), Iph 
(photocurrent), Io (diode current), and Rsh (shunt resistance) as 
depicted below: 

The current Io and Ish are expressed by: 

𝐼o = 𝐼sd (e
𝑞 (𝐼out 𝑅s+𝑉)

𝑛 𝐾 𝑇 − 1) , (1) 

 

Figure 1. SDM equivalent circuit. 
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𝐼sh =
𝐼out 𝑅s + 𝑉

𝑅sh

, (2) 

with Iout expressed as:  

𝐼out = 𝐼ph − 𝐼sh − 𝐼o . (3) 

The output current of the PV is outlined by the following 
formula: 

𝐼out = 𝐼ph − 𝐼sd (e
𝑞(𝐼out 𝑅s+𝑉)

𝑛 𝐾 𝑇 − 1) −
𝐼out 𝑅s + 𝑉

𝑅sh

 . (4) 

In accordance with [23], the symbol Isd denotes the saturation 
current of the reverse diode, while q represents the elementary 
charge of an electron (1.602 × 10-19 C). Additionally, K denotes 
the Boltzmann constant, V signifies the voltage output of the 
cell, Rs stands for the resistance in series, n represents the diode 
ideality factor, T denotes the temperature in Kelvin, and Rsh is 
the resistance in shunt. 

2.2. Double-Diode Model (DDM) 

The DDM circuit, depicted in Figure 2, is an alternative circuit 
model utilized to tackle the energy loss problem that is not 
accounted for by the SDM. The current Iout in the DDM circuit 
can be calculated using the following formula: 

𝐼out = 𝐼ph − 𝐼o1− 𝐼o2 − 𝐼sh . (5) 

The symbols Io2 and Io1 are used to denote the currents 
flowing through the second and first diodes, respectively.  

𝐼o1 = 𝐼sd1 (e
𝑞 (𝑉+𝐼out 𝑅s)

𝑛1 𝐾 𝑇 − 1), (6) 

𝐼o2 = 𝐼sd2 (e
𝑞 (𝑉+𝐼out 𝑅s)

𝑛2 𝐾 𝑇 − 1) . (7) 

The current Iout can be determined by applying Equation (8), 
where the ideality factor of the diodes is represented by n2 and n1  

𝐼out

= 𝐼ph − 𝐼sd1 (e
𝑞 (𝐼out 𝑅s+𝑉)

𝑛1 𝐾 𝑇 − 1)

− 𝐼sd2 (e
𝑞 (𝐼out 𝑅s+𝑉)

𝑛2 𝐾 𝑇 − 1) −
𝐼out  𝑅s + 𝑉

𝑅sh

 . 

(8) 

2.3. PV Module Model 

The output current Iout of a photovoltaic (PV) module 
comprising Np × Ns solar cells arranged in parallel and/or series 
can be expressed as follows:  

- when considering the SDM based PV module: 

𝐼out

= 𝐼ph − 𝐼sd (e
𝑞(𝑉/𝑁s+𝐼 𝑅𝑠/𝑁p)

𝑛 𝐾 𝑇 − 1)

−
𝐼out 𝑅s/𝑁p + V/𝑁s

𝑅sh

 , 

(9) 

- for the DDM:  

𝐼out

= 𝐼ph − 𝐼sd1 (e
𝑞(𝐼out 𝑅s/𝑁p+𝑉/𝑁s)

𝑛1 𝐾 𝑇 − 1)

− 𝐼sd2 (e
𝑞(𝑉/𝑁s+𝐼out 𝑅s/𝑁p)

𝑛2 𝐾 𝑇 − 1)

−  
𝐼out 𝑅s/𝑁p + V/𝑁s

𝑅𝑠ℎ

 . 

(10) 

2.4. Objective function  

The primary objective of this study is to reduce the difference 
between the current simulated by the model and the current 
measured from the solar cell. To achieve this, a popular and 
accurate approach is to utilize the root mean square error 
(RMSE) as a loss function, which allows for the identification of 
optimal parameter values for the PV model. In this research, the 
Dynamic FDB selection method is utilized to extract the 
parameters of a solar PV system through voltage and current 
measurements. The loss function is formulated based on the 

deviation between the measured 𝐼meas and the estimated 𝐼estim 
current, which is quantified as follows: 

𝐹loss = √
1

𝑁
(∑|𝐼estim − 𝐼meas|2

𝑁

𝑖=1

) . (11) 

3. MRFO-DFDB ALGORITHM 

3.1. MRFO 

The Manta Ray Foraging Optimization (MRFO) algorithm is 
a metaheuristic optimization algorithm that is inspired by the 
foraging behaviours of manta rays in the ocean. The algorithm 
uses a population-based approach to iteratively search for 
optimal solutions to a given problem [24]. 

The foraging behaviours of manta rays, namely chain 
foraging, cyclone foraging, and somersault foraging, are 
modelled mathematically to guide the search process. Below are 
the descriptions of the corresponding mathematical models. 

3.1.1. Chain foraging 

MRFO uses manta rays that locate and swim towards 
positions with higher concentrations of plankton, assuming 
those positions contain the best solution. Manta rays form a 
foraging chain and move towards both the food and the 
individual in front of them. This mathematical model is described 
as: 

𝑥𝑖
𝑑(𝑡 + 1)

= {
𝑥𝑖

𝑑(𝑡) + 𝑟 ∙ (𝑥best
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛼 ∙ (𝑥best
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 1

𝑥𝑖
𝑑(𝑡) + 𝑟 ∙ (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛼 ∙ (𝑥best

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) , 𝑖 = 2 . . 𝑁

} , 
(12) 

𝛼 = 2 ∙ 𝑟 ∙ √|log(𝑟)| . (13)  

Figure 2. DDM equivalent circuit.  
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The position of the i-th individual in the d-th dimension at 

time t is represented by 𝑥𝑖
𝑑(𝑡). The update of the i-th individual's 

position is determined by the (i-1)th individual's position 

𝑥𝑖−1(𝑡), and the position of the food with high concentration 

𝑥best
𝑑 (𝑡). This update is computed using a weight coefficient α, 

and a random vector r within the range of [0, 1]. 

3.1.2. Cyclone foraging 

Manta rays form a foraging chain and swim towards patches 
of plankton by spiralling when they are in deep water. In the 
cyclone foraging strategy, each manta ray not only spirals towards 
the food, but also swims towards the individual in front of it, 
forming a line that spirals. The equation describing this 
movement of the manta rays in a two-dimensional space can be 
written as: 

{
𝑋𝑖(𝑡 + 1) = 𝑋best + 𝑟. (𝑋𝑖−1(𝑡) − 𝑋𝑖(𝑡)) + 𝑒𝑏𝜔. cos(2π𝜔) . (𝑋best(𝑡) − 𝑋𝑖(𝑡))

𝑌𝑖(𝑡 + 1) = 𝑌best + 𝑟. (𝑌𝑖−1(𝑡) − 𝑌𝑖(𝑡)) + 𝑒𝑏𝜔 . sin(2π𝜔) . (𝑌best(𝑡) − 𝑌𝑖(𝑡))
} (14) 

The range of the random number 𝜔 is between 0 and 1.  
This motion behaviour can be extended to an n-dimensional 

space. For simplicity, the equation describing of cyclone foraging 
is descried as: 

𝑥𝑖
𝑑(𝑡 + 1) = {

𝑥best
𝑑 + 𝑟 ∙ (𝑥best

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥best

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) , 𝑖 = 1

𝑥best
𝑑 + 𝑟 ∙ (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥best

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) , 𝑖 = 2. . 𝑁

} (15) 

𝛽 = 2 ∙ e𝑟1∙ 
𝑇−𝑡+1

𝑇 ∙ sin(2 π 𝑟1) . (16) 

The equation includes 𝛽 as weight coefficient, T as the max 

number of iterations, and 𝑟1 as random number in [0, 1]. 
In the cyclone foraging strategy, individuals perform a 

random search with respect to the food as their reference 
position, which balances exploitation and exploration. To 
prioritize exploration, individuals can be forced to scan away 
from the current best position by randomly allocating a new 
position in the entire search space as a reference position. The 
mathematical equation for this mechanism is presented below: 

𝑥rand
𝑑 = 𝐿𝑏𝑑 +  𝑟 ∙ (𝑈𝑏𝑑 − 𝐿𝑏𝑑), (17) 

𝑥𝑖
𝑑(𝑡 + 1) = {

𝑥rand
𝑑 + 𝑟 ∙ (𝑥rand

𝑑 − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥rand

𝑑 − 𝑥𝑖
𝑑(𝑡)) , 𝑖 = 1

𝑥rand
𝑑 + 𝑟 ∙ (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥rand

𝑑 − 𝑥𝑖
𝑑(𝑡)) , 𝑖 = 2. . 𝑁

}. (18) 

The equation includes 𝑥rand
𝑑  as a random position generated 

within the search space, and 𝑈𝑏𝑑 and 𝐿𝑏𝑑 as the upper and lower 
boundaries of the d-th dimension. 

3.1.3. Somersault foraging  

In somersault foraging, the food position is viewed as a pivot 
and individuals swim around it and somersault to a new position. 
This helps to update positions around the best solution found so 
far. The model is formulated as: 

𝑥𝑖
𝑑(t + 1) = 𝑥𝑖

𝑑(t) + 𝑆 ∙ (𝑟2 ∙ 𝑥best
𝑑 − 𝑟3 ∙ 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 1. . 𝑁, (19) 

The somersault range of manta rays is determined by the 
somersault factor, denoted as S, where S equals 2 multiplied by 
two random numbers (r2 and r3) between 0 and 1. 

By updating their positions around the best solution found so 
far, individuals can move to any position in a new search domain. 
The range of somersault foraging reduces as iterations increase, 
allowing individuals to approximate gradually to the optimal 
solution.  

3.2. dFDB algorithm 

The dFDB technique is an evolved form of the FDB method, 
which was developed to offer more effective guidance in the 
search process [25]. Like the FDB method, the solution 
candidates in dFDB are chosen from the population based on 
their scores in a greedy manner. The score of a solution candidate 
is determined based on its fitness and range ratings. Therefore, 
the fitness ratings of applicants for the solution in a population 
P are indicated by the F-vector, as illustrated in (20). The distance 
range (DPi) necessary to evaluate the score of the ith solution 
candidate (Pi) can be derived using the Euclidean metric, which 
is defined in Equation (21). Here, Pi represents the i-th candidate 
and Pbest represents the highest-ranking candidate in P. 

𝐹 ≡ [𝑓1 . . . . . . 𝑓𝑛]𝑇 , (20) 

𝐷𝑃𝑖
 = √(𝑥1[𝑖] − 𝑥𝑙[best])2 + ⋯ . . +(𝑥𝑛[𝑖] − 𝑥𝑛[best])2 . (21) 

The distance DP that pertains to the P-population can be 

expressed in accordance with the equation provided as:  

𝐷𝑝  ≡[𝑑1 . . . . . . 𝑑𝑚]𝑇 . (22) 

Prior to the computation of the scores of potential candidates’ 
solution, the F vector outlined in Equation (20), and the distance 
vector (Dp) stipulated Equation (22) are subjected to 
normalization. The computation of the FDB score for the i-th 
solution candidate (SPi) is carried out using the following 
equation:  

𝑆𝑃𝑖
 = 𝑤 ∙ 𝑛𝑜𝑟𝑚𝐹𝑖 + (1 − 𝑤) ∙ 𝑛𝑜𝑟𝑚𝐷𝑃𝑖

, (23) 

The weighting coefficient w, which determines the impact of 
distance and fitness values on score calculation, is fixed at 0.5 in 
the FDB method. The solution candidates' FDB scores are 
expressed in Equation (24). 

𝑆𝑃  ≡[𝑆1 . . . . . . 𝑆𝑚]𝑇 . (24) 

3.3. The proposed MRFO-dFDB 

The MRFO-dFDB has two main components: foraging 
behaviour and dynamic fitness distance balance. The foraging 
behaviour component involves three steps: search, attack, and 
return. In the search phase, the rays explore the search space 
randomly. In the attack phase, they converge to the promising 
regions of the search space based on the prey density (the fitness 
value of the potential solutions). In the return phase, the rays 
return to the previously visited promising regions to avoid 
getting stuck in local optima. 

The dynamic fitness distance balance component balances the 
exploitation and exploration of the search space. It involves 
dynamically adjusting the distance measure used to calculate the 
fitness value of the potential solutions. The distance measure is 
increased to encourage exploration and decreased to encourage 
exploitation. The pseudocode of the algorithm is given in 
Figure 3. 

The algorithm starts with an initial population of rays, and it 
iteratively repeats the foraging behaviour and dynamic fitness 
distance balance components until the stopping criterion is met 
(maxFE). The best solution found by the algorithm is returned 
as the optimized solution. 

The framework used to estimate the solar model parameters 
is depicted in Figure 4. First, the algorithm initializes the solar 
PV model, which serves as the basis for calculating the model 



 

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 5 

parameters. Then, the algorithm reads the current and voltage 
measurements, which are used as inputs to the model. These 
measurements provide information on the performance of the 
solar PV system and are necessary for estimating the model 
parameters. 

After that, the MRFO-dFDB takes over to localize the 
strongest candidate. This step involves minimizing Equation 
(12), which is the cost function used to evaluate the performance 
of the model. The goal of this step is to find the model 
parameters that best fit the current and voltage measurements. 
By minimizing the cost function, the algorithm can identify the 
strongest candidate among the potential solutions. 

Finally, the MRFO-dFDB outputs the best solution, which is 
the set of model parameters that minimize the cost function. This 
set of parameters represents the best fit between the model and 
the measured data, and can be used to improve the performance 
of the solar PV system.  

4. IMPLEMENTATION SETUP 

The suggested MRFO-dFDB algorithm (Figure 4) is applied 
to evaluate the parameters of solar PV models using STP6-
120/36 and PWP201 PV modules [26] (both for DDM and SDM 
model) and compared with WOS (War Strategy Optimization 
Algorithm) [27] and SFO (Sunflower Optimization Algorithm) 
[28]. The STP6-120/36 module is monocrystalline and the 
PWP201 module is polycrystalline (see Table 1), both having 36 
cells in series. In order to derive the solar PV model parameters, 
the MRFO-dFDB algorithm settings are defined Table 2 and 
Table 3. 

5.  RESULTS AND DISCUSSION 

5.1. SDM results 

The main target is to retrieve the parameters: Isd, Iph, Rsh, Rs, 
and n for the SDM PV modules STP6-120/36 and Photowatt-
PWP201. Table 3 presents the lower and upper boundaries of 
these parameters. The P-V and I-V characteristics of the 
modules using MRFO-dFDB, WOS, and SFO are plotted in 
Figure 6. The loss function convergence curves are shown in 
Figure 7 and Figure 8, and the absolute current error is shown in 
Figure 9 and Figure 10 respectively. The parameters extracted by 
MRFO-dFDB are enumerated in Table 4 (for all tests SDM and 
DDM). 

 

Figure 3. MRFO-dFDB pseudocode. 

 

Figure 4. Proposed framework 

Table 1. PV model. 

PV type Temp (◦C) Ns × Np Cells PV model 

STP6-120/36 55 36 × 1 SDM/DDM 

Photowatt-PWP201 45 36 × 1 SDM/DDM 

Table 2. MRFO-dFDB parameters. 

Model 
Population 
number (P) 

Number of  

Iterations maxFE 

number of decision  
variables (dim) 

SDM 50 1000 1 

DDM 50 1000 1 

Table 3. Limits of the SDM and DDM model. 

Parameter 
STP6-120/36 Module Photowatt-PWP201 Module 

Ub Lb Ub Lb 

Isd1, Isd2 50 0 50 0 

Iph 8 0 2 0 

Rs 0.36 0 2 0 

Rsh 1500 0 2000 0 

n1, n2 50 1 50 1 

Table 4. Parameter extracted by MRFO-dFDB for SDM and DDM models. 

PV  
type 

PV  
model 

Isd1, Isd2  
in μA 

Iph 
in A 

Rs  
in Ω 

Rsh  
in Ω 

n1, n2 

STP6 
SDM 2.27, - 7.4553 0.0046 950.303 1.257, - 

DDM 10.8, 2.375 7.457 0.00459 213.353 31.8, 1.3521 

PWP201 
SDM 4.59, - 1.026 0.0329 69.5824 1.38, - 

DDM 1.98,1.581 1.0328 0.0352 18.8596 1.344, 13.81 
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5.2. DDM results 

Considering the DDM, a total of 7 parameters, which include 
Isd2, Isd1, IPh, Rsh, Rs, n1, n2, needs to be retrieved. The upper and 
lower boundaries for these metrics can be found in Table 3.  

Figure 11 and Figure 12 indicate the I-V and P-V features of 
the PV using MRFO-dFDB, WOS and SFO. The loss function 
convergence curves are displayed in Figure 13 and Figure 14, 
while Figure 15 and Figure 16 show the absolute current error 
plot. The retrieved parameters by MRFO-dFDB are reported in 
Table 4. 
  

 

Figure 5. I-V and P-V curves for SDM model (STP6 module). 

 

Figure 6. I-V and P-V curves for SDM model (PWP201 module) 

 

Figure 7. Convergence curve SDM (STP6 module) 

 

Figure 8. Convergence curve SDM (PWP201 module). 

 

Figure 9. Absolute current and mean errors in SDM model (STP6) 

 

Figure 10. Absolute current and mean errors in SDM model (PWP201) 

 

Figure 11. I-V and P-V curves for DDM model (STP6 module). 
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5.3. Discussion 

To gauge the validity of the approaches, we evaluate their 
predictive efficiency by means of three measures: mean square 
error (MSE), root mean square error (RMSE), normalized RMSE 
(NRMSE) denoted by: 

𝑀𝑆𝐸 =
1

𝑚
∑  (𝐼es(𝑘) − 𝐼tr(𝑘))2

𝑚

𝑘=1

 , (25) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝐼es,max − 𝐼es,min

 , (26) 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑[(𝐼es(𝑘) − 𝐼tr(𝑘)]2

𝑚

𝑘=1

 , (27) 

where m equals the number of points, Ies and Itr represent the 
measured and estimated output current. 

Table 5 summarizes the different calculated indicators of the 
methods applied to identify PV solar parameters for the STP6-
120/36 and Photowatt-PWP201modules. The MSE, RMSE, and 
NRMSE are employed to assess the algorithms’ performance. 

From the results: For SDM, we can observe that MRFO-
dFDB and WOS show similar performance with RMSE values 
of 15.2 in STP6 and 2.4, and 1.87 mA for PWP201 respectively. 
In addition, the NRMSE values are slightly close apart from the 
STP6 case where WOS is slightly better. The SFO approach 
clearly underperforms, with RMSE values of 138.9 and 14.33 mA 
and a high NRMSE value of 0.0186 and 0.0107. 

 

Figure 12. I-V and P-V curves for DDM model (PWP201 module) 

 

Figure 13. Convergence curve DDM (STP6 module) 

Table 5. Predictive performance indicators for STM for SDM and DDM. 

PV type PV model Methods 
RMSE 
in mA 

NRMSE MSE 

STP6 

SDM 

MRFO-dFDB 15.2 0.0020 2.3e-4 

WOS 15.2 0.0020 2.2e-4 

SFO 138.9 0.0186 0.0193 

DDM 

MRFO-dFDB 15.3 0.0020 2.3e-4 

WOS 15.2 0.0020 2.29e-4 

SFO 135.2 0.0184 0.019 

PWP201 

SDM 

MRFO-dFDB 2.4 0.0018 6.15e-6 

WOS 1.87 0.0014 3.5e-6 

SFO 14.33 0.0107 2.05e-4 

DDM 

MRFO-dFDB 1.91 0.0014 3.67e-6 

WOS 1.87 0.0014 3.52e-6 

SFO 77.88 0.0046 3.48e-05 

 

Figure 14. Convergence curve DDM (PWP201 module). 

 

Figure 15. Absolute current and mean errors in DDM model (STP6). 

 

Figure 16. Absolute current and mean errors in DDM model (PWP201). 
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Similar to SDM, the MRFO-dFDB and WOS showed close 
results with WOS being slightly better. The SFO algorithm has 
high values for RMSE and NRMSE. 

MSE reflects the closeness of the predicted values to the 
measured values. 

When examining the MSE values, we are able to note that: 
MRFO-dFDB and WOS have the smallest MSE values for the 
SDM and DDM cases (WOS being slightly better), suggesting 
that both methods are capable of providing precise predictions. 
In the SDM case, the MSE value for MRFO-dFDB is 2.3 10-4 
and 6.15 10-6, while WOS recorded 2.2 10-4 and 3.5 10-6, while in 
the MDD, MRFO-dFDB recorded 2.3 10-4 and 3.67 10-6, which 
is quite close to WOS that recorded 2.29 10-4 and 3.52 10-6. 

The SFO shows the largest MSE values amongst the three 
methodologies for the SDM and DDM cases. In the SDM case, 
the MSE value for SFO is 0.0193 and 2.05 10-4, while in the 
DDM case, the MSE values are 0.019 and 3.48 10-5. 

Table 6 summarizes the max, mean, min, and power errors 
(Equation (28)) for the different algorithms. 

𝑃error =
1

𝑚
∑  |𝑃est(𝑖) − 𝑃meas(𝑖)|

𝑚

i=1

 , (28) 

where Pest and Pmeas are the estimated and measured power, and 
m being the number of points. 

When looking at the algorithms' performance, the MRFO-
dFDB algorithm shows the greatest performance over all, with 
the lowest maximum error in all tests, except for the SDM 
(STP6) case. The WOS algorithm's performance is fairly 
comparable to that of the MRFO-dFDB algorithm, with 
significantly higher maximum error values. In contrast, SFO 
algorithm underperforms substantially, having the worst peak 
and power error values and fairly high average error values. 

The same conclusion can be drawn for the power error, we 
can see that the MRFO-dFDB algorithm performs better than 
the other algorithms, except for the DDM (PWP201) case. 

Moreover, the performance of MRFO-dFDB is evaluated 
against the WOS and SFO in terms of computational speed. We 
used MATLAB software on an Asus laptop with an Intel Core i7 
processor running at 2.6 GHz and 8 GB of memory. We 
executed the individual algorithms and measured the running 
time for 1000 iterations, results are collected in Table 7. 

As can be seen, the WOS method takes more time to estimate 
the PV model parameters, over 100 seconds in all tests. 

On the other hand, SFO is the second fastest, however, their 
accuracy is low (Table 5 and Table 6). SFO scored the highest 
errors. Moreover, their indicators (RMSE, NRMSE, MSE) are 
higher than those of WOS and MRFO-dFDB.  

MRFO-dFDB being close in performance to WOS is the 
fastest except DDM (STP6). We can state that MRFO-dFDB has 
a fair trade-off between precision and rapidity. 

Altogether, the results in the tables give a useful summary of 
the performance of the different algorithms in solar PV 
parameter estimation. The results imply that MRFO-dFDB is a 
very promising approach to achieve solar PV parameter 
estimation. 

6. CONCLUSION  

In conclusion, the MRFO-dFDB algorithm emerges as an 
efficient approach for accurately estimating solar PV model 
parameters. Through the integration of fitness distance balance, 
the algorithm effectively balances exploration and exploitation, 
facilitating the rapid identification of optimal parameters while 
adapting to changes within the search space. 

Applying MRFO-dFDB to extract parameters from the 
STP6-120/36 and Photowatt-PWP201 solar modules yields 
exceptional predictive performance for both single diode (SDM) 
and double diode (DDM) models. In comparison to state-of-the-
art methods such as SFO and WOS, MRFO-dFDB outperforms 
them. While achieving comparable predictive performance to 
WOS, MRFO-dFDB stands out with significantly faster 
computation speed. Moreover, MRFO-dFDB surpasses SFO in 
terms of RMSE, NRMSE, and MSE values, indicating its 
superior accuracy. 

Specifically, MRFO-dFDB achieves lower RMSE values, 
namely less than 15.3 mA for the STP6-120/36 module and less 
than 2.4 mA for the Photowatt-PWP201 module. Additionally, it 
demonstrates lower maximum errors of 39.02 mA and 5.33 mA, 
as well as lower power errors of 155.42 mW and 14.122 mW, for 
the STP6-120/36 and Photowatt-PWP201 solar modules, 
respectively. Furthermore, it exhibits excellent performance with 
faster computation speed, taking less than 30.1 seconds in all 
tests, further highlighting its superiority. 

Overall, the results affirm the potential of MRFO-dFDB in 
accurately estimating solar PV system parameters, while offering 
enhanced computational efficiency. These findings underscore 
its value in optimizing PV system design and performance. 
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