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1. INTRODUCTION 

Measurement results are very often used as input elements in 
decision-making procedures, which represent the core element 
of conformity assessment. This is a very critical task in many 
fields, from the industrial one, where conformity of a product's 
feature to given specifications must be assessed, to environment 
protection, health, legal and forensic ones, where decisions are 
generally related to checking that the presence of a substance (a 
pollutant, a drug, etc.) or the error of an instrument does not 
exceed a given threshold or maximum admissible limit. 

Most decisions – if not all of them – are taken by comparing 
a measurement result with a threshold or a range of admissible 
values, where the threshold, or the upper and lower limits of the 
range, are given as simple quantity values [1]. Then, according to 
where the measurement result is located with respect to the 
threshold or the range, a decision is taken on whether conformity 
can be declared or not. 

If measurement uncertainty is not considered, or if it can be 
assumed to be negligible, this decision can be easily taken by 
comparing two numerical values: the measured value with the 

threshold (as shown in Figure 1) or the measured value with the 
upper and lower limits of the range. Figure 1 shows that, in such 
a situation, the decision is apparently taken with no risk of being 
wrong. 

However, even if measurement uncertainty has been 
evaluated and found to be negligible, a risk of wrong decision still 
exists, because it is widely recognized [2] that “when all of the known 
or suspected components of error have been evaluated and the appropriate 
corrections have been applied, there still remains an uncertainty about the 
correctness of the stated result, that is, a doubt about how well the result of 
the measurement represents the value of the quantity being measured”. It is 
also well-known, according to the GUM [2], that in many 
applications “it is often necessary to provide an interval about the 
measurement result that may be expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the quantity 
subject to measurement. Thus, the ideal method for evaluating and expressing 
uncertainty in measurement should be capable of readily providing such an 
interval, in particular, one with a coverage probability or level of confidence 
that corresponds in a realistic way with that required”. 

When measurement uncertainty is taken into account, again a 
decision about conformity can be readily taken if the coverage 
interval is completely below or above the threshold (Figure 2). 
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On the other hand, the situation represented in Figure 3 appears 
to be quite critical, since the threshold falls inside the coverage 
interval representing the fraction of the distribution of values 
that could reasonably be attributed to the quantity subject to 
measurement (the measurand). 

This means that there is a probability that some of the values 
that could reasonably be attributed to the measurand might be 

greater than threshold t, even if the measured value x̅𝑚 is lower 
than the threshold. This also means that, if conformity shall be 
assessed when the measurand is lower than the threshold, a risk 
exists of declaring the measurand conforming while it is not, and 
this risk can be evaluated starting from measurement uncertainty 
[3]. 

Conformity assessment involves, therefore, a decision-
making process affected by uncertainty. Such a problem has been 
widely covered in the literature [4]-[6], mostly by taking epistemic 
uncertainty into account [7]. However when the input elements 
to a decision-making process are measurement results, 
uncertainty takes a well-defined meaning, defined by the VIM [1] 
and the GUM [2], and such a definition and the related evaluation 
methods cannot be disregarded when evaluating the risk of 
wrong conformity assessment, as clearly shown in [8]-[13]. 

This problem is covered by the BIPM document JCGM 
106:2012 [14], in a very extensive way under a strict metrological 
perspective, and treating uncertainty according to the GUM 
recommendations [2]. In particular, it covers the problem of 
stating whether a measured quantity falls inside a given tolerance 
interval, which is defined in [14] as the “interval of permissible values 
of a property”.  

According to the above definition, the tolerance interval can 
be both a closed interval and a one-sided interval. Furthermore, 
document [14] defines acceptance limits in such a way that, given a 
measurement uncertainty value, the measurand is declared 
conforming if the measured value falls inside the acceptance limits 
and non-conforming when it falls outside these limits. The 
document considers different decision rules and the way to 
evaluate the associated risk of incorrect assessment starting from 
measurement uncertainty. Hence, it represents a very useful 
guide in evaluating the probability of declaring as conforming an 
item that is not, and vice versa.  

Although this problem is well discussed in [14] from a 
theoretical perspective, little guidance is provided, from a more 
practical point of view, on how to set the numerical value of the 
acceptance limit not to exceed the maximum admissible risk of 
making a wrong decision (once the measurement uncertainty and 
the maximum admissible risk are given). 

This is an important issue when dealing with critical 
measurements, such as those performed to protect health and 
environment. This paper, after having quickly reviewed the most 
used decision rules, proposes a method that, given a threshold 
(or more in general a tolerance limit), provides the acceptance 
limit as a function of measurement uncertainty and a predefined 
maximum admissible risk of exceeding the given threshold. 
Example are given for some of the most used probability 
distributions. 

2. THE MOST COMMON DECISION RULES 

To correctly evaluate the risk associated with decision rules, it 
is necessary to identify or assume the probability density function 
(PDF) representing the distribution of values that could 
reasonably be attributed to the measurand [2], since this risk can 

be evaluated only after integrating such PDF from - to the 
threshold [2], [3].  

It is well known that, according to the GUM [2], the standard 
uncertainty u(x) associated with a measurement result x is the 
standard deviation of the PDF representing the distribution of 
values that could reasonably be attributed to the measurand. 

On the other hand, the expanded uncertainty U(x) = ku(x) 
identifies a coverage interval [x – U(x); x + U(x)], built about the 
numerical value x of the measurement result, whose coverage 
probability depends on the assumed probability density function 
and the considered coverage factor k. 

It is also worth reminding that the PDF representing the 
distribution of values that could reasonably be attributed to the 
measurand depends on the available information. It is generally 
– and wrongly – considered that the available information comes 
only from the employed measuring equipment [15], while 
document JCGM 106:2012 [14] states that such information 
always has two components: the one available before performing 
the measurement (called prior information) and the additional 
information supplied by the measurement. The resulting, or 
posterior PDF, can be obtained by applying Bayes' theorem [14]. 

Keeping in mind the above considerations, it is possible to 
consider and discuss the two most common and employed 
decision rules in conformity assessment. It is assumed that the 
PDFs considered in the following sections are always the 
posterior PDFs. 

2.1. Decision rule based on simple acceptance 

This rule, also known as shared risk, considers accepting as 
conforming (and reject otherwise) an item whose property has a 

 

Figure 1. Comparison of a measured value with a threshold, when the 
measured value 𝑥𝑚 is lower (a) and greater (b) than threshold t and 
measurement uncertainty is not taken into account.  

 

Figure 2. Comparison of an uncertainty interval with a threshold, when the 
uncertainty interval is completely below (a) and above (b) threshold t.  

 

Figure 3. Comparison of an uncertainty interval with a threshold, when the 
threshold falls within the interval.  



 

ACTA IMEKO | www.imeko.org June 2023 | Volume 12 | Number 2 | 3 

measured value inside the tolerance interval. In this case, 
uncertainty is not explicitly considered.  

In mathematical terms, and assuming that the tolerance 
interval is given by all values lower or equal than threshold t, an 
item is accepted as conforming if the measured value xm of 
property x satisfies to condition  𝑥m ≤ 𝑡. 

Let’s make a few considerations about this decision rule. It 
can be readily checked that, assuming a symmetrical PDF about 
xm for the values that could reasonably be attributed to the 
measurand, the highest probability of exceeding the threshold is 
obtained in the limit case of xm = t and is 50%, no matter on the 
evaluated uncertainty value and the PDF. Therefore, when this 
decision rule is applied, measurement uncertainty does not affect 
the risk: reducing uncertainty only decreases the width of the 

interval of non-conforming values 𝑥nc that are considered as 
conforming, but does not reduce the risk of misidentifying non-
conforming items as conforming, which still remains 50% (when 
xm = t). To define a maximum width of the interval of non-
conforming values that are considered as conforming, a mutually 
agreed maximum acceptable expanded uncertainty Umax is 
generally set and it is therefore suggested that the expanded 
uncertainty U associated to the measured value, for a coverage 

factor k  = 2, must satisfy U  Umax [14]. 

2.2. Decision rule based on guarded acceptance / rejection 

The simple acceptance rule reported in Sec 2.1 shows that the 
closer the measured value to the threshold, the higher is the 
probability (up to 50%) of accepting an item as conforming that 
is not, and vice versa [14]. This probability can be reduced by 
setting an acceptance limit inside the tolerance interval, as 
suggested by [14] and as shown in Figure 4, when, respectively, 
the measured value is required to be lower or equal a given 
threshold (𝑥m ≤ 𝑇𝑈) - as in Figure 4a - and the measured value is 
required to be within a closed interval (𝑇𝐿 ≤ 𝑥m ≤ 𝑇𝑈) - as in 
Figure 4b.  

Figure 4 represents the case of guarded acceptance [14], that is 
the decision rule for which the risk of accepting a non-
conforming item is reduced by setting an acceptance limit AU 
inside the tolerance interval (see Sec. 8.3.2 in [14]). 

According to this rule [14], if the tolerance interval is a one-
sided interval, upper limited by TU (Figure 4a), an acceptance 

limit AU is set inside the tolerance interval. The interval between AU 

and TU (highlighted in yellow in Figure 4a) is called the guard band 
and its width (with sign) is defined as [14]:  

𝑤 = 𝑇U − 𝐴𝑈 . (1) 

In the case of Figure 4a, it is w > 0. 
On the other hand, in the case of a two-sided tolerance 

interval, two acceptance limits AL and AU are set, as shown in 
Figure 4b. In this case, two guard bands are obtained, whose 
widths are defined as wU= TU – AU> 0 and wL= TL – AL< 0 
respectively. 

From Figure 4, it can be conclusded that, when a guarded 
acceptance decision rule is considered, an acceptance interval 
smaller than the tolerance interval is obtained. This decision rule 
is hence in favour of increasing the probability that an accepted 
item is truly conforming.  

For the sake of completeness, let’s consider that, with respect 
to the two cases shown in Figure 4 (𝑥m ≤ 𝑇𝑈  and 𝑇𝐿 ≤ 𝑥m ≤ 𝑇𝑈), 
other two cases exist, that is: 

• 𝑥m ≥ 𝑇𝐿: in this case, considering guarded acceptance, AL is on the 
right of TL and w= TL – AL< 0; 

• 𝑥m ≤ 𝑇𝐿  ∪  𝑥m ≥ 𝑇𝑈: in this case, considering guarded acceptance, 

AU is on the right of TU and AL is on the left of TL, so that wU < 0 
and wL> 0; 

so that the obtained acceptance interval is smaller than the 
tolerance interval. 

A similar, though opposite situation is obtained in the case of 
guarded rejection [14]. In fact, this decision rule is in favour of 
increasing the probability that a rejected item is truly non-
conforming [14]. In this case, acceptance limits are set, providing 
acceptance intervals greater than the tolerance interval. Without 
entering the details, as an example, by considering again 
Figure 4a, if the guarded rejection decision rule were applied, 
then the acceptance limit would be at the right of TU, thus 
providing a wider acceptance interval. 

In general, |w| is set as a multiple of the expanded 

uncertainty: |w|= rU [14]. If the PDF representing the 
distribution of values that could reasonably be attributed to the 
measurand is known or assumed, it is also possible to evaluate 
the risk of declaring a non-conforming value as conforming (or 
vice versa), as shown in Figure 5 in the case 𝑥m ≤ 𝑇𝑈, when a 

normal PDF is considered and |w| = U = 2u is taken, as 
suggested by [16]. In particular, Figure 5a and Figure 5b 
represent, respectively, the decisions of guarded acceptance and 
guarded rejection. 
 

 

Figure 4. Decision rule based on guarded acceptance. In Figure 4a a one-sided 
tolerance interval upper limited by TU is considered, while in Figure 4b a two-
sided tolerance interval is considered between a lower and an upper limit TL 
and TU.  

 

Figure 5. Example when 𝑥m ≤ 𝑇𝑈 and a normal PDF is supposed. The standard 
uncertainty 𝑢(𝑥) and the maximum admissible limit TU (red line) are given in 
Table 1, and |𝑤| = 𝑈(𝑥) = 2 𝑢(𝑥) is supposed. The coloured area 
represents the probability of exceeding TU, when the measured value 
corresponds to AU, in the cases of guarded acceptance (a) and guarded 
rejection (b).  

(b) 

Tolerance interval 

w > 0 

Acceptance interval 

Acceptance interval 

Tolerance 
interval 

wL < 0 wU> 0 
(a) 

Guard band 
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To understand the relationship between w and the risk of 
wrong decision, let us consider the numerical example in 
Figure 5, where the maximum admissible limit (MAL, or, 
employing the same notation as the one in [14], TU) for a 
pollutant in water is assumed to be 50 mg/l. The pollutant 
concentration is assumed to be measured with a standard 
uncertainty of 5 mg/l, and the PDF representing the distribution 
of values that could reasonably be attributed to the measurand is 
assumed to be normal, as summarized in Table 1. 

 According to these values, the expanded uncertainty with k = 2 
is U = 10 mg/l. A guard band w = U = 10 mg/l is considered, 
so that an acceptance limit AU = TU – w = 40 mg/l is set, when 
guarded acceptance is considered. 

Therefore, the concentration of the considered pollutant in 
water is considered as conforming for every measured value  

xm  AU. If xm = AU, the situation shown in Figure 5a is 
obtained, in which the red line is located on TU. 

Since a coverage factor k = 2 has been considered, the 
coverage probability of interval [xm – U; xm + U] is p = 95.45%. 
Therefore, the risk of exceeding TU, that is the probability pw of 
taking the wrong decision, when this decision rule is adopted, is 

𝑝𝑤 =
1−𝑝

2
= 2.28 %, independently of U. Of course, if xm < AU, 

pw < 2.28 %. 
On the other hand, if the aim of the measurement procedure 

is to assess, with high probability, that the pollutant 
concentration is higher than TU, the acceptance limit should be 
set, according to [14], at AU = TU + w. With the same numerical 
values and assumptions as before, this means that AU = 60 mg/l. 
Therefore, the concentration of the considered pollutant in water 
is considered as non-conforming for every measured value 

xm  AU. If xm = AU, the situation shown in Figure 5b is 
obtained, in which the red line is again located on TU. 

In this case, the risk of declaring that the pollutant exceeds 
the tolerance limit TU while it does not is again pw = 2.28%. On 
the other hand, the risk that the pollutant is above the limit is, 
obviously, 97.7%,  

3. THE RELATIONSHIP AMONG UNCERTAINTY, ACCEPTANCE 
LIMIT AND THE MAXIMUM ADMISSIBLE RISK 

The example shown in the previous section relates 
uncertainty, acceptance limit and the risk of wrong conformity 
assessment in an implicit way, since it assumes that the 
distribution of the values that could reasonably be attributed to 
the measurand obeys to a normal PDF and the generally used 
coverage factor k = 2 is considered. These assumptions lead to 
the well-known 2.28 % risk of wrong decision. 

However, different situations with different PDFs and 
different values for the acceptance limits may occur in practical 
cases, where also different values might be desired for the 
maximum admissible risk (MAR) of wrong decisions. 

Therefore, a general formulation relating uncertainty, 
acceptance limit and MAR would be very useful to obtain one of 

 
1 It is worth reminding that a normal PDF is generally obtained when the combined standard 

uncertainty is obtained as a combination of a sufficiently high number of contributions, so that the 

Central Limit Theorem applies, as suggested by the GUM [2]. On the other hand, the triangular and 

them, given the other two ones. Document JCGM 106:2012 [14] 
provides some very general indications on how to do this, mostly 
referring to a normal PDF. Attempts were made in the past, 
especially in the legal metrology domain [17], to set the 
acceptance limits in such a way that, given the measurement 
uncertainty, a pre-defined risk could be granted. However, to the 
Authors' knowledge, no practical indications are available to 
relate acceptance limits, measurement uncertainty, and risk in 
such a way that, having set two of them, the third one could be 
found. 

Such a relationship can be obtained starting from the PDF 
p(x) of the distribution of values that could reasonably be 
attributed to measurand x. Having defined such a PDF, the 
pertaining cumulative probability distribution function (CDF) 
can be obtained as: 

𝐹𝑋(𝑥) = ∫ 𝑝(𝑡) d𝑡
𝑥

−∞

 (2) 

It can be readily checked that 𝐹𝑋(𝑥) represents the probability 
that variable X is lower than x. Similarly, 1 − 𝐹𝑋(𝑥) represents 
the probability that variable X is greater than x. 

Therefore, using the same notation as the one used in [14], in 
the general case shown in Figure 4b, given a CDF 𝐹𝑋(𝑥), a 
tolerance limit TUL, and a MAR, if, for the considered measurable 
property, the measured value must be below the given tolerance 
limit TU, the following inequality must be satisfied: 

𝐹𝑋(𝑇U) ≥ 1 − MAR , (3) 

while, if the measured value must be above the given tolerance 
limit TL, the following inequality must be satisfied: 

𝐹𝑋(𝑇L) ≤ MAR . (4) 

Therefore, one of the following two equations must be solved 
to get the value of the acceptance limit AU (or AL) that ensures 
that the probability that the tolerance limit TU (or TL) is exceeded 
is exactly equal to the MAR: 

𝐴U|𝐹𝑋(𝑇U) = 1 − MAR , (5) 

when the measured value must be below the threshold, or  

𝐴L|𝐹𝑋(𝑇L) = MAR , (6) 

when the measured value must be above the threshold. 
The acceptance limit values ensure that, respectively, if 𝑥𝑚 ≤ 𝐴U 

(𝑥𝑚 ≥ 𝐴L), then pw  MAR, where xm is the measured value and 
pw is the probability of exceeding the tolerance limit, that is, the 
probability of wrong decision. 

Of course, solving these equations is strictly related to the 
shape of the PDF associated with the measurement result, and a 
solution cannot always be found in closed form. This does not 
prevent, however, the application of this method, because a 
numerical solution can be obtained by means of a Monte Carlo 
simulation, following the recommendations provided by 
Supplement 1 to the GUM [18].  

On the other hand, the vast majority of the practical cases 
consider normal, uniform, triangular or trapezoidal PDFs1. In 
such cases, a closed-form solution can be readily obtained for AU 
(or AL), and, hence, the normal, uniform, triangular and 
trapezoidal PDFs are considered in the following.  

trapezoidal PDFs are generally obtained when two uniform PDFs are linearly combined, as in many 

practical measurement applications. 

Table 1. Numerical example. 

Max. 
admissible limit TU 

Standard uncertainty 
u 

pdf type 

50 mg/l 5 mg/l Normal 



 

ACTA IMEKO | www.imeko.org June 2023 | Volume 12 | Number 2 | 5 

3.1. The measurement results distribute according to a normal 
posterior PDF 

When a normal PDF is considered: 

𝑝(𝑥) =
1

√2 π σ2
e
−(𝑥−𝜇)2

2 σ2  , (7) 

where 𝜇 is the mean value and 𝜎 is the standard deviation. Then, 
the corresponding CDF is given by: 

𝐹𝑋(𝑥) =
1

2
[1 + erf (

𝑥 − μ

√2 ⋅ σ
)] , (8) 

where: 

erf(𝑧) =
2

π
∑

(−1)𝑛 ⋅ 𝑧2𝑛+1

𝑛! ⋅ (2𝑛 + 1)

∞

𝑛=0

 (9) 

is the error function and can be well approximated with no more 
than 10 terms in (9). 
𝐹𝑋(𝑇U) can, therefore, be written as: 

𝐹𝑋(𝑇U) =
1

2
[1 + erf (

𝑇U − 𝜇

√2 ⋅ σ
)] , (10) 

while 𝐹𝑋(𝑇L) can be similarly obtained. 
In the above equation, 𝜇, the mean value of the normal PDF, 

represents the measured value 𝑥m of the measurand. Therefore, 
if we want to find AU (AL), that is the maximum (minimum) 
value of the measured value such that 𝑝w ≤ MAR, 𝜇 = 𝐴U (𝜇 =
𝐴L) must be considered in (10). Therefore, according to (5) and 
(6) 

1

2
[1 + erf (

𝑇U,L − 𝐴U,L

√2 σ
)] 

= {
1 − MAR      if  𝑥m < 𝑇U          is required
  MAR               if  𝑥m > 𝑇L           is required. 

 

(11) 

When 𝑥m < 𝑇U is required, solving equation (11) yields: 

𝐴U = 𝑇U − √2 σ ⋅ erfinv(1 − 2 ⋅ MAR) , (12) 

where erfinv is the inverse error function, which is given by: 

erfinv(𝑧) = ∑
𝑐𝑘

2 𝑘 + 1

∞

𝑘=0

(
√π

2
𝑧)

2 𝑘+1

 , (13) 

where 𝑐0 = 1 and 

𝑐𝑘 = ∑
𝑐𝑚 𝑐𝑘−1−𝑚

(𝑚 + 1)(2𝑚 + 1)

𝑘−1

𝑚=0

 .  

Similarly to the error function, also the inverse error function 
is well approximated with no more than 10 terms in (13).  

On the other hand, when 𝑥m > 𝑇L is required, solving (11) 
yields: 

𝐴L = 𝑇𝐿 − √2 σ ⋅ erfinv(2 ⋅ MAR − 1) . (14) 

Since the inverse error function is an anti-symmetric function, 
that is: 

erfinv(−𝑧) = − erfinv(𝑧) , (15) 

equations (12) and (14) can be grouped into a single equation: 

𝐴U,L = 𝑇U,L ∓ √2 σ ⋅ erfinv(1 − 2 ⋅ MAR) . (16) 

Therefore, to have a risk lower than MAR to exceed the 
tolerance limit TU (or TL), an acceptance limit AU (or AL) should 

be evaluated, obtained by shifting the tolerance limit to the left 

(or right) by quantity √2 ⋅ σ ⋅ erfinv(1 − 2 ∙ 𝑀𝐴𝑅). In particular: 

• the limit is shifted to the left when 𝑥𝑚 ≤ 𝑇U is required and 
guarded acceptance is applied; 

• the limit is shifted to the right when 𝑥𝑚 ≥ 𝑇L is required and 
guarded acceptance is applied; 

• the limit is shifted to the right when 𝑥𝑚 ≤ 𝑇U is required and 
guarded rejection is applied; 

• the limit is shifted to the left when 𝑥𝑚 ≥ 𝑇L is required and 
guarded rejection is applied. 
To provide a numerical example, let us consider again the 

example considered in Section 2.2 and the values in Table 1. Let 
us remember that 𝑥𝑚 < 𝑇U is required and suppose the MAR is 
set to 5 % and guarded acceptance is considered. By applying 
equation (16), it follows 𝐴U = 41.8 mg/l. 

Figure 6 shows the normal PDF with a mean value equal to 
the obtained AU and standard uncertainty given in Table 1. In 
this figure, the coloured area represents the probability of being 
above TU, as also reported in Table 2. This probability is exactly 
the set MAR. This means that, for every value 𝑥𝑚 < 𝐴U, the 

probability of exceeding 𝑇U will be lower than 5%. 

It is therefore possible to set the acceptance limit, given the 
PDF associated with the estimated measurement uncertainty and 
the desired MAR. 

3.2. The measurement results distribute according to a uniform 
posterior PDF 

When a uniform PDF is considered: 

𝑝(𝑥) = {
1

2𝑎
           if       𝜇 − 𝑎 <  𝑥 <  𝜇 + 𝑎

0                                           otherwise ,
 (17) 

where 𝜇 is the mean value and 2a is the support of the PDF, 

which is related to the PDF standard deviation by 𝑎 = 𝜎 ⋅ √3.  
The corresponding CDF is given by: 

𝐹𝑋(𝑥) = ∫ 𝑝(𝑡) d𝑡 =
𝑥

−∞

∫
1

2 𝑎
 d𝑡 =

𝑥

𝜇−𝑎

1

2 𝑎
 . (𝑥 − 𝜇 + 𝑎) (18) 

 

Figure 6. Example when the normal PDF is centered on AU = 41.8 mg/l. The 
coloured area represents the probability of being above TU.  

Table 2. Probability of being below or above TU in the case of Figure 6. 

𝑷(𝒙 < MAL) 𝑷(𝒙 > MAL) 
0.95 0.05 
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and therefore: 

𝐹𝑋(𝑇U,L) =
1

2 𝑎
⋅ (𝑇U,L − 𝜇 + 𝑎) . (19) 

From (5) and (6), and considering 𝜇 = 𝐴U,L in (19): 

1

2a
⋅ (𝑇U,L − 𝐴U,L + a) = 

= {
1 −MAR          if  𝑥𝑚 < 𝑇U     is required
MAR                   if  𝑥𝑚 > 𝑇𝐿    is required .

 

(20) 

By solving the above equations, the value for the acceptance 
limit is found: 

𝐴U,L = 𝑇U,L ∓ 𝑎 ⋅ (1 − 2 ⋅ MAR) (21) 

which shows that, to have a risk below MAR, the acceptance 
limit must be set to the left or right of the tolerance limit (as 
detailed in the previou section) by quantity 𝑎 ⋅ (1 − 2 ⋅ MAR). 

To provide a numerical example, let us consider again the 
example of the pollutant in water considered in Section 2.2. Let 
us consider again that TU = 50 mg/l as in Table 1, but let us now 
suppose that the PDF associated with the estimated 
measurement uncertainty is uniform. Let us also suppose that the 
half-width of this uniform PDF is a = 10 mg/l, that the MAR is 
set to 5 % and that guarded acceptance is applied. By applying 
equation (21), it follows AU = 41 mg/l.  

Figure 7 shows the uniform PDF with a mean value equal to 
the obtained AU. The coloured area represents the probability of 
being above TU, which is exactly 5 %. This means that every 
measured value of the pollutant in water lower than AU will 
provide a risk of exceeding TU lower than 5 %. 

3.3. The measurement results distribute according to a triangular 
posterior PDF 

When a symmetric triangular PDF is considered, its equation 
is the following:  

𝑝(𝑥) = {
𝑦1(𝑥)  if  𝜇 −  𝑎 ≤ 𝑥 ≤ 𝜇

𝑦2(𝑥)  if  𝜇 <  𝑥 ≤ 𝜇 + 𝑎
0               otherwise,

 (22) 

where: 

𝑦1(𝑥) =
𝑥

𝑎2
+
𝑎 − 𝜇

𝑎2
 (23) 

and: 

𝑦2(𝑥) = −
𝑥

𝑎2
+
𝑎 + 𝜇

𝑎2
 (24) 

and where 𝜇 and 2a are, respectively, the mean value and the 

support of the PDF. Furthermore, 𝑎 = 𝜎 √6 holds, where 𝜎 is 
the standard deviation of the PDF.  

To evaluate the corresponding CDF, two situations should be 
considered, that is the case when 𝑥 ≤ μ and the case when 𝑥 >
 𝜇. 

If 𝑥 ≤ μ, then the CDF is given by: 

𝐹𝑋,1(𝑥) =  ∫ 𝑦1(𝑡) d𝑡
𝑥

𝜇−𝑎

 = ∫ (
𝑡

𝑎2
+
𝑎 − 𝜇

𝑎2
) d𝑡

𝑥

𝜇−𝑎

 

=
1

2 𝑎2
⋅ [𝑥2 + 2𝑥 ⋅ (𝑎 − 𝜇) + (𝑎 − 𝜇)2] 

=
1

2 𝑎2
⋅ [𝑥 + (𝑎 − 𝜇)]2 , 

(25) 

while, if 𝑥 >  μ, the CDF is given by: 

𝐹𝑋,2(𝑥) =
1

2
+∫ 𝑦2(𝑡) d𝑡 =

1

2

𝑥

𝜇

+∫ (−
t

a2
+
a + 𝜇

a2
)

𝑥

𝜇

d𝑡 

=
1

2
−

1

2 𝑎2
. [𝑥2 − 2 𝑥 ∙ (𝑎 + 𝜇) + 𝜇 ∙ (𝜇 + 2𝑎)] . 

(26) 

Now, (5) and (6) should be solved for both 𝐹𝑋,1 and 𝐹𝑋,2, thus 

leading to four equations. However, only the most likely 
situations are here reported. In fact, when 𝑥 ≤ 𝑇U is required and 
the MAR is supposed to be small (as it should be when 
environmental, legal or health situations are considered), the 
situation shown in Figure 8a will occur, so that equation (27) 
must be solved. 

𝐴U|𝐹𝑋,2(𝑇U) = 1 − MAR . (27) 

On the other hand, when 𝑥𝑚 ≥ 𝑇L is required and again the 
MAR is supposed to be small, the situation in Figure 9b will 
occur, so that equation (28) must be solved. 

𝐴L|𝐹𝑋,1(𝑇L) = MAR . (28) 

Equation (27) yields: 

1

2
−

1

2 𝑎2
⋅ [𝑇U

2 − 2 ∙ 𝑇U ⋅ (𝑎 + 𝐴U) + 𝐴U ⋅ (𝐴U + 2𝑎)]

= 1 − MAR . 
(29) 

By solving this simple equation with respect to AU, the 
following second-order equation is found: 

𝐴U
2 − 2 ∙ 𝐴U ⋅ (𝑇U − 𝑎) + [(𝑇U − 𝑎)

2 − 2 ∙ 𝑎2 ⋅ MAR] = 0 , (30) 

 

Figure 7. Example when the uniform PDF is centered on AU = 41 mg/l. The 
coloured area represents the probability of being above TU.  

 

Figure 8. Example when a triangular PDF is assumed. The coloured area 
represents the probability of exceeding TU (or TL) when: a) the measured 
value is required to be below the tolerance limit (𝑥𝑚 ≤ 𝑇U); b) the measured 
value is required to be above the tolerance limit (𝑥𝑚 ≥ 𝑇L).  
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which provides the two solutions: 

𝐴U = (𝑇U − 𝑎) ∓ 𝑎 ∙ √2 ∙ MAR . (31) 

Among the two above solutions, the one with the minus sign 

can be discarded. In fact, if we considered a PDF with width 2a 

and 𝜇 = (𝑇U − 𝑎) − 𝑎 ∙ √2 ∙ MAR, this PDF would not cross TU 
and therefore it would provide a risk of exceeding TU equal to 
zero. Of course, this should be a very lucky situation, but here 
the limit not to exceed the MAR needs to be found and, 
therefore, the following equation holds, under the assumption 
that 𝑥 ≤ 𝑇U is required: 

𝐴U = (𝑇U − 𝑎) + 𝑎 ∙ √2 ∙ MAR . (32) 

When, on the other hand, 𝑥 ≥ 𝑇L is required, (28) yields: 

1

2 𝑎2
⋅ [𝑇L

2 + 2 ∙ 𝑇𝐿 ⋅ (𝑎 − 𝐴L) + (𝑎 − 𝐴L)
2] = MAR . (33) 

Solving this simple equation with respect to AL, the following 
second-order equation is found: 

𝐴L
2 − 2 ∙ 𝐴L ⋅ (𝑇L + 𝑎) + [(𝑇L + 𝑎)

2 − 2 ∙ 𝑎2 ⋅ MAR] = 0 , (34) 

which provides the two solutions: 

𝐴L = (𝑇L + 𝑎) ∓ 𝑎 ∙ √2 ∙ MAR . (35) 

Among the two above solutions, the one with the plus sign 

can be discarded. In fact, if we considered a PDF with width 2a 

and 𝜇 = (𝑇L + 𝑎) + 𝑎 ∙ √2 ∙ MAR, this PDF would not cross TL 
and therefore it would provide a risk of exceeding TL equal to 
zero. Of course, this should be a very lucky situation, but here 
the limit not to exceed the MAR needs to be found and, 
therefore, the following equation holds, under the assumption 
that 𝑥 ≥ 𝑇L is required: 

𝐴𝐿 = (𝑇L + 𝑎) − 𝑎 ∙ √2 ∙ MAR . (36) 

Finally, by considering (32) and (36) together, it is: 

𝐴U,L = 𝑇𝑈,𝐿 ∓ 𝑎 ⋅ (1 − √2 ∙ MAR) , (37) 

that is, the acceptance limit must be shifted to the left or right of 
the tolerance limit (as detailed in Sec. 3.1) by quantity 𝑎 ⋅

(1 − √2 ∙ MAR) to have a risk lower than the MAR. 

As a numerical example, let us consider again the example of 
the pollutant in water considered in Section 2.2. Let us consider 
again that TU = 50 mg/l as in Table 1, but let us now assume a 
triangular PDF associated to the estimated uncertainty. 
Furthermore, the half-width of the triangular PDF is supposed 
to be a = 10 mg/l, the MAR is set to 5% and guarded acceptance 
is applied. Since 𝑥 ≤ 𝑇U is desired, by applying (37), AU = 43.2 
mg/l is obtained. Figure 9 shows the obtained PDF (centered on 
the obtained AU value), where the coloured area represents the 
probability of being above the tolerance limit TU, which is exactly 
equal to the pre-set MAR (5%). This means that every measured 
value of the pollutant in water lower than the obtained AU value 
will provide a risk lower than 5 %. 

3.4. The measurement results distribute according to a trapezoidal 
posterior PDF 

When a symmetric trapezoidal PDF is considered, then the 
PDF is described by the following equations: 

𝑝(𝑥) =

{
 
 

 
 

y3(x)    if     μ − 𝑎 ≤ 𝑥 ≤ μ −  𝑎 β
1

𝑎 ⋅ (1 + β)
    if   μ −  𝑎 β <  𝑥 ≤ μ +  𝑎 β

𝑦4(𝑥)      if      μ +  𝑎 β <  𝑥 ≤ μ +  𝑎 
0                           otherwise,         

 (38) 

where: 

𝑦3(𝑥) =
1

𝑎2 ⋅ (1 − β2)
⋅ (𝑥 + 𝑎 − 𝜇)  (39) 

𝑦4(𝑥) = −
1

𝑎2 ⋅ (1 − β2)
⋅ (𝑥 − 𝑎 − 𝜇) , (40) 

𝜇 is the mean value of the PDF, 2a  is its width and  is the ratio 
between the two basis. 

To evaluate the corresponding CDF, three situations should 
be considered, that is the case when 𝜇 −  𝑎  ≤ 𝑥 ≤ 𝜇 −  𝑎 𝛽, the 
case when 𝜇 −  𝑎 𝛽 <  𝑥 ≤ 𝜇 +  𝑎 𝛽 and the case when 𝜇 +  𝑎 𝛽 <
 𝑥 ≤ 𝜇 +  𝑎. However, similar considerations as the ones made 
for the triangular PDF apply, so that only the two situations 
shown in Figure 10a and Figure 10b are considered. 

Let us call 𝐹𝑋,3(𝑥) the CDF for the case in Figure 10a. The 
following equation must then be solved: 

𝐴𝑈|𝐹𝑥,3(𝑇U)  =  1 –  MAR . (41) 

On the other hand, let us call 𝐹𝑋,4(𝑥) the CDF for the case in 
Figure 10b. The following equation must then be solved: 

𝐴𝐿|𝐹𝑋,4(𝑇𝐿) = MAR .  (42) 

 

Figure 9. Example when the triangular PDF is centered on AU = 43.2 mg/l. The 
coloured area represents the probability of being above TU.  

 

Figure 10. Example when a trapezoidal PDF is assumed. The coloured area 
represents the probability of exceeding the tolerance limit when: a) the 
measured value is required to be below the tolerance limit (𝑥𝑚 ≤ 𝑇U); b) the 
measured value is required to be above the tolerance limit (𝑥𝑚 ≥ 𝑇𝐿).  
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It follows: 

𝐹𝑥,3(𝑥) =
1 − 𝛽

2 (1 + 𝛽)
+

2 𝛽

1 + 𝛽
+ ∫ 𝑦4(𝑡) d𝑡 

𝑥

𝜇+𝑎𝛽

 

               =
1 + 3 𝛽

2 (1 + 𝛽)
+

1

2 𝑎2(1 − 𝛽2)
∙

⋅ {−𝑥2 + 2(𝜇 + 𝑎) ⋅ [𝑥 − (𝜇 + 𝑎 𝛽)]+(𝜇 + 𝑎 𝛽)2} 

(43) 

and, by solving (41), the second-order equation is obtained: 

𝐴U
2 − 2 ∙ 𝐴U ⋅ (𝑇U − 𝑎) + (𝑇U − 𝑎)

2 − 2 ∙ 𝑎2 ⋅ MAR ⋅ (1 − 𝛽2)
= 0, 

(44) 

for which the two following solutions can be found: 

𝐴U = (𝑇U − 𝑎) ∓ 𝑎 ⋅ √2 ∙ MAR ⋅ (1 − 𝛽2) . (45) 

According to the same considerations as the ones in the case 
of a triangular PDF, it can be concluded that, among the two 
above solutions, the one with the minus sign can be discarded. 
Therefore, the following equation holds, under the assumption 

that x  TU is required: 

𝐴U = (𝑇U − 𝑎) + 𝑎 ⋅ √2 ∙ MAR ⋅ (1 − 𝛽2) . (46) 

On the other hand: 

FX,4(x)=∫ y3(t) dt
x

μ-a
=

1

2 𝑎2(1-𝛽2)
⋅[x2+2∙(a-μ)∙𝑥+(𝑎 − 𝜇)2] (47) 

and, by solving (42) with respect to AL, the following second-
order equation is obtained:  

𝐴L
2 − 2 ∙ 𝐴L ⋅ (𝑇L + 𝑎) + (𝑇L + 𝑎)

2 − 2 ∙ 𝑎2 ⋅ MAR ⋅ (1 − 𝛽2)
= 0 

(48) 

Equation (48) has two solutions:  

𝐴L = (𝑇L + 𝑎) ∓ 𝑎 ⋅ √2 ∙ MAR ⋅ (1 − 𝛽2) , (49) 

where, according to the same previous considerations, the one 
with the plus sign can be discarded, so that: 

𝐴L = (𝑇L + 𝑎) − 𝑎 ⋅ √2 ∙ MAR ⋅ (1 − 𝛽2) . (50) 

Finally, by considering together (46) and (50), it can be 
written: 

𝐴U,L = 𝑇U,L ∓ 𝑎 ⋅ (1 − √2 ∙ MAR ⋅ (1 − 𝛽2)) , (51) 

that is, the acceptance limit is simply shifted to the left or right 
of the tolerance limit (as detailed in Sec. 3.1) by quantity 𝑎 ⋅

(1 − √2 ∙ MAR ⋅ (1 − 𝛽2)). 

To provide a numerical example, let us consider again the 
example of the pollutant in water considered in Section 2.2. Let 
us consider again that TU = 50 mg/l as in Table 1, but let us now 

suppose that the PDF is trapezoidal with  = 0.5. Furthermore, 
the half-width of the trapezoidal PDF is supposed to be 𝑎 = 10 mg/l, 
the MAR is set to 5 % and guarded acceptance is applied.  

Since, in the considered example, x  TU is required, (51) 
yields AU = 42.7 mg/l. Figure 11 shows the obtained PDF 
(centered on the obtained AU value), where the coloured area 
represents the probability of being above the tolerance limit TU 
and it is exactly equal to the pre-set MAR (5 %). This means that 
every measured value of the pollutant in water lower than the 
obtained AU value will provide a risk lower than 5 %. 

4. CONCLUSIONS 

Following the suggestions given in the present Standards [14] 
[16], a measurand is considered as conforming when the 
measured value falls inside the acceptance interval, as defined in 
art. 3.3.9 of [14], and is considered non-conforming when the 
measured value falls inside the rejection interval, as defined in 
art. 3.3.10 of [14]. 

The definition of the acceptance interval strongly depends on 
the measurement uncertainty with which the measurand is 
measured and the admissible risk of declaring a non-conforming 
value as conforming and vice versa. 

While this problem is clearly highlighted in [14], very few 
practical indications are given on how to define the acceptance 
limits once the measurement uncertainty is estimated, and the 
maximum admissible risk (MAR) given. 

This paper has shown how the acceptance limits depend also 
on the probability density function (PDF) considered to 
represent the distribution of values that could reasonably be 
attributed to the measurand, and has proposed a general method 
to relate them to the considered PDF and the considered MAR. 

The most used normal, uniform, triangular and trapezoidal 
PDFs have been considered and general formulas have been 
given to define the acceptance limits given uncertainty and MAR. 

The numerical examples have shown that different results are 
obtained for the acceptance limits, when the different PDFs are 
considered, as expected from the theory. The closed-form 
formulas provided in the paper allow one to evaluate the 
acceptance limits in a straightforward way, in both situations of 
guarded acceptance and guarded rejection. 

Should different probability distributions be considered, the 
general proposed method can still be applied, and a Monte Carlo 
simulation can provide the desired acceptance limits.  
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