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1. INTRODUCTION 

Building biodeterioration can occur due to various agents and 
mechanisms, and the effects on colonized surfaces are various. 
The analysis of climatic conditions and material characterization 
play a decisive role in assessing the deterioration of the 
construction elements and identifying the most appropriate 
conservation measures. Several researchers have focused on 
investigating fungal species that proliferate in buildings [1], [2]. 
The study conducted by Guerra et al. [3] on a historic building in 
Porto Alegre (Brazil) led to the isolation of 60 fungal colonies 
that attack mortar coating. Generally, mold and moisture-related 
problems are reported in the literature among the main factors 
causing building pathologies. A systemic approach to the 
humidity problems in buildings was adopted by Pietrzyk [4], who 
provided a tool to perform a probabilistic risk/reliability analysis 

of building performance concerning fungal growth. As Andersen 
et al. [5] stated, nature and culture influence the fungal 
composition indoors, as they determine the ways and habits of 
window opening and, consequently, the permeability and 
exchanges between internal and external environments. A pilot 
study on Danish homes showed that a closed envelope protects 
against outside fungal spores but simultaneously entraps spores 
from fungi growing inside the building. 

Moreover, even indoor environments perceived as good and 
dry might still have undiscovered dampness, resulting in fungal 
growth. This was demonstrated by the investigation conducted 
by Bastholm et al. [6], who found that fungal contamination can 
occur even in spaces with controlled conditions. That is the case 
of a Danish museum with controlled relative humidity below 
60% that had xerophilic fungal formations on heritage artifacts 
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throughout the repository. Furthermore, building materials can 
be pre-contaminated by fungal spores, as shown in a study by 
Andersen et al. [7] on gypsum wallboards. The results suggest 
that some fungal species are already incorporated in the 
materials, probably in the paper/carton layer or the gypsum core, 
before the panels reach the retailers or the building site. De 
Castro Silveira et al. [8] conducted a study in the humid temperate 
climate of Florianópolis (Brazil) to investigate the influence of 
thermal insulation and solar orientation of walls on mold growth 
in naturally ventilated residences using simulations. The impact 
of wind-driven rain on the spore germination was analyzed in [9]. 
Results showed that wind-driven rain loads tend to intensify 
mold growth on interior wall surfaces, especially at the edges of 
the walls, and to increase indoor relative humidity (RH) and 
energy consumption for heating.  

Nowadays, advanced techniques can be employed to 
characterize the building materials and identify possible 
conservation and restoration measures, such as energy-dispersive 
X-ray fluorescence spectroscopy, powder X-ray diffractometry, 
and thermogravimetric analysis (TGA). In [10], colorimetric 
acquisition from a laser scanner and materic survey were used to 
observe alterations and irregularities within the masonry of a 
historic chapel. Forestieri e Álvarez de Buergo [11] used infrared 
thermography (IRT) to evaluate the water distribution in stone 
specimens made of calcarenite and sandstone under steady 
laboratory conditions for temperature and relative humidity. 
Based on the study's outcomes, IRT can be effectively used as a 
non-destructive technique to identify the stone’s physical 
characteristics and the validity of conservation measures. 

Moisture and temperature are the parameters affecting mold 
growth the most. In particular, the critical moisture level is the 
lowest relative humidity at which mold growth starts, and it 
varies for different species and materials [12]. Menneer et al. [13] 
explained that among the various factors influencing mold 
prediction models are fungal diffusion, fungal production, and 
available nutrients. However, most models only include the 
relative humidity levels and temperature. Based on the VTT 
model, mold indices were generated using air RH and 
temperature measurements from domestic environments. 

As observed by [14], steady-state methods (such as Glaser) are 
unsuitable for predicting the long-term moisture response of a 
wall. Instead, numerical hygrothermal models simulating the 
coupled transport of heat and moisture over varying 
environmental conditions could provide the necessary data to 
evaluate the long-term heat and moisture performance of 
building elements and predict the risk of moisture damage [15]. 
Bruno and Bevilacqua [16] demonstrated that mass 
transportation phenomena influencing the transmission thermal 
losses in opaque envelope components depend on the built-in 
humidity level, material hygrometric properties, and climatic 
conditions. An overview of how the combined heat, air, and 
moisture modeling evolved is provided by Hens [17]. The author 
points out that although the theory is well established and the 
currently available software is quite complete, they are not always 
enough to explain and treat the damage cases encountered in 
practice. As several assumptions and simplifications are adopted 
in modeling, the risk assessment for a specific situation is loaded 
with uncertainty.  

Cultural heritage objects and artworks (paintings, textiles, 
wooden objects, written documents, maps, audio-visual 
materials, stone objects, stained-glass windows, etc.) are made of 
materials that can be subjected to biodeterioration [18], [19], 
which can result in enormous and irreparable cultural losses [20]. 

For example, microbial attacks have been detected on the 
paintings of brick walls at old Chinese tombs [21]. Canvas 
paintings are also highly vulnerable to moisture exposure [22] 
[23]. Signs of deterioration on canvas oil paintings were observed 
in the historic building that houses the National Theater of Costa 
Rica. The damages were caused by microorganisms, among 
which a new species, expanding the list of fungi capable of 
inhabiting and damaging cultural heritage. Fazio et al. [24] have 
identified two fungal species responsible for the deterioration 
phenomena that affected the Jesuit South American polychrome 
wood sculpture at the Museum of Natural Sciences in La Plata, 
Buenos Aires province, Argentina. Fungal diversity was analyzed 
by Pinheiro et al. [25] at some archives and libraries in Portugal. 
Some species are known to be eroding and staining agents and 
can alter the paper's mechanical and structural characteristics. 
Mold contamination was also found in paper samples from the 
Ottoman Archives in Turkey [26]. Kosel and Ropret [27] 
gathered information on fungal isolates and their biological 
activity from the original materials of cinematographic films and 
historical photographs. Photographic emulsions and coatings, 
being organic and hygroscopic, serve as a readily available and 
rich source of nutrients. The effects of the fungi were also 
observed on old albumen prints taken from an Egyptian archive 
dating back to 1880-1890 [28], causing changes in color and 
darkening of the light areas. The identified fungal species could 
grow on the surface of the model Albumen silver print, causing 
damage to the binder and extending their growth to the paper 
fibers. Guiamet et al. [29] studied the phenomena of biofouling 
and biodeterioration of photos and maps preserved in the 
Historical Archive of the Museum of La Plata, Argentina, and in 
two repositories of the National Archive of the Republic of 
Cuba. The fungi degraded the cellulose and produced pigments 
and acids, altering the aesthetic of the documents and causing the 
biodeterioration of photographs [30]. Rakotonirainy et al. [31] 
sought to understand the origin of fungal development and the 
causes of mold growth problems in cinematographic films stored 
in plastic and metal containers at the French Film Archives. The 
authors discovered that the concentration of airborne fungi was 
relatively low, while fungal concentrations on the surfaces were 
up to four times greater than the limit. 

Furthermore, fatigue damage due to relative humidity cycles 
[32] or uniform moisture content (or temperature) variation [33] 
can cause fracture mechanisms in paintings. Analyzing the wall 
paintings of the Samye Temple in Tibet, He et al. [34] discovered 
that the volume change caused by clay minerals in the adobe 
support and mud plaster layers, subject to humidity variations, 
combined with the impermeable acrylate coating, may have 
accelerated degradation. The difference in thermal and humidity 
expansion properties between the various materials of the 
stratigraphy can cause stress between the layers, decaying the wall 
paintings [35]. The deterioration risk for the polychrome clay 
sculptures of the Buddha at Baosheng Temple in Suzhou, China, 
was assessed by Sheng et al. [36]. Field environmental monitoring 
demonstrated that the sculptures’ surface layer is in a state of 
dynamic absorption and evaporation, depending on the humidity 
of the surrounding air, directly affecting the risk of microbial 
growth. 

Historic buildings and archaeological heritage are particularly 
vulnerable to the formation of fungal colonies [37]. This is 
because they are often unoccupied [38], and therefore, the indoor 
environmental conditions may not be controlled, creating 
favorable settings for the growth of fungi on the surfaces of the 
building elements. Olivito et al. [39] developed a process for 
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generating an inventory of historical and cultural heritage 
buildings. The goal was to identify a prioritized list of criticalities 
in urban areas with higher vulnerability and to determine a safety 
threshold from a structural perspective. 

Experience has proved that installing monitoring systems can 
help to control the constantly changing indoor environmental 
conditions according to the actual behavior of structures and 
materials. For example, Svatos et al. [40] developed a 
measurement system for diagnosing the technical and thermal 
features of wooden houses’ envelope. In addition to air, 
temperature, and humidity sensors, four moisture guard 
intelligent sensors were placed in the exterior walls to allow early 
diagnosis of humidity in the structure. Lamonaca et al. [41] 
proposed a distributed measurement system to monitor a 
museum's environment by counting the Colony Forming Units 
and evaluating the pollution by fungal spores. Another example 
is provided by D’Alvia et al. [42], who used a wireless sensor 
network, minimally invasive, for environmental data acquisition 
in a museum. A distributed sensor network using the RS-232 
protocol was developed by Giulietti et al. [43] to create a remote 
monitoring system based on electrical impedance measurements. 
Measurement nodes were installed into the structural elements 
to immediately identify the presence of contaminants or the 
formation of cracks. Finally, Lamonaca et al. [44] proposed 
upgrading the hardware interface architecture to synchronize the 
operations of standalone measurement instruments in the 
absence of networking, using phase delay compensation 
programming. A study conducted by Grøntoft [45] on sculptures 
in two Norwegian Medieval stone churches has highlighted the 
need for frequent and systematic recording of environmental 
parameters to protect artifacts of cultural heritage, such as 
painted wood. However, the author underlines that the lack of a 
budget for conservation inhibits such measures. 

Fungal spores are everywhere, and even though their main 
passage into the indoor environment is through the outdoor air 
[46], spores can also be transported inside with the occupants’ 
shoes and clothes, pets’ fur, firewood, etc. Additionally, they can 
originate from food or spoiled food, potted plants [46], or be 
embedded in contaminated building materials [7]. 

Predicting the existence of fungal growth can be difficult since 
its appearance results from a complex and multivariate process. 
The most critical parameters affecting the development of mold 
are [47]-[54]: 

• The hygrothermal conditions, i.e., temperature, air RH, 
and water availability of the substrate; 

• The availability and quality of nutrients; 
• The material’s properties in relation to pH, chemical 

composition, water absorbing potential, etc. 
It is generally accepted that indoor dampness and excess 

moisture are crucial to fungal germination and growth [1], [53], 
[55], while they have also been associated with adverse health 
symptoms among the occupants [1], [56]-[60]. Water 
condensation on the buildings’ surfaces or construction should 
be prevented. Risk areas are external walls with insufficient 
insulation, thermal bridges, and generally, cold surfaces and 
spaces with restricted air movement or inadequate ventilation. 
For example, the common practice of internally insulating 
historic buildings can result in moisture accumulation in the wall 
structure and restrict its ability to dry out [2]. 

The necessary nutrients for mold growth can be easily 
encountered, as any source of carbohydrates and even dust or 
dirt reserves can be broken down into useful sugars and other 
compounds [50], [51]. Finally, the properties of different building 

materials dictate which species can germinate and proliferate on 
them. That is because each fungus has specific requirements for 
water availability, nutrients, pH level, temperature, etc. [47]. 
Studies have shown associations between specific materials 
serving as substrates and their common colonizers [61]. 

There is consensus for the optimal conditions of fungal 
growth about moisture availability and temperature, which are 
typically used for risk assessment of fungal growth. Generally, 
75% of relative humidity is considered critical for the appearance 
of growth, while the ideal temperature ranges between 20-30°C 
[12], [53], [62] - [64]. Therefore, fungi can be divided based on 
their required moisture level into xerophilic, mesophilic, and 
hydrophilic, or into primary, secondary, and tertiary colonizers 
[1], [47], [52], [65], [66]. Primary colonizers (xerophilic fungi) 
require an Equilibrium Relative Humidity (ERH) smaller than 
80%. Secondary colonizers (mesophilic fungi) need an 80-90% 
ERH. Tertiary colonizers (hydrophilic fungi can grow when 
ERH is higher than 90% [1]. 

Indoor environmental conditions are quite distinct from 
outdoor settings [67], and therefore, indoor fungi are also specific 
for indoor spaces [5]. The fungal species that have most 
commonly been isolated from indoor surfaces are: Aspergillus 
fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus versicolor, 
Cladosporium herbarum, Paecilomyces spp., Penicillium brevicompactum, 
Purpureocillium lilacinum, Stachybotrys chartarum, Trichoderma spp. 
[68], [69], [70], [71]. Commonly encountered species in water-
damaged buildings are: Aspergillus spp., Aspergillus niger, Aspergillus 
versicolor, Acremonium spp., Chaetomium spp., Cladosporium spp., 
Cladosporium chartarum, Cladosporium sphaerospermum, Penicillium 
spp., Penicillium chrysogenum, Trichoderma spp., and Stachybotrys 
chartarum [72], [73], [74], [75]. More specifically, Aspergillus 
versicolor, Wallemia sebi, Paecilomyces variotii, and some Penicillium 
species have low moisture requirements (xerophilic fungi). At the 
same time, Trichoderma spp., Stachybotrys chartarum, Chaetomium 
globosum, Aspergillus fumigatus, and actinomycetes require ERH 
above 90% to initiate growth (hydrophilic fungi) [1], [65], [76]. 

The present study aims to investigate biodeterioration in 
cultural heritage by analyzing which fungal species are commonly 
found in building materials used in historic buildings. The 
literature analysis reveals that research on the formation of fungi 
on building materials is relatively fragmented. Each study focuses 
on a specific case, analyzing individual materials under certain 
conditions. However, an overarching vision is missing. The 
proposed study seeks to fill this gap by providing a collection of 
fungal species that can grow on some of historic buildings' most 
common building materials. Knowledge of the identity of the 
microorganisms colonizing the materials facilitates the definition 
of conservation strategies to avoid damage and promote 
restoration. Prevention and control measures can be 
implemented more readily using the developed database. The 
occurrence of the indoor growth conditions is assessed regarding 
the typical climate of three localities, representative of Northern, 
Central, and Southern Europe. Following a preliminary analysis 
in [77], this work deepens the behavioral study of certain building 
materials concerning heat and humidity transfer. Finally, possible 
mitigation strategies are suggested to prevent degradation 
phenomena. 
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2. MATERIALS AND METHODS 

2.1. Common construction materials in historic buildings and 
associated fungal species 

The present study aims to assess the risk of fungal growth on 
the interior surfaces of historical buildings under normal 
operating conditions. The analysis will be carried out for some 
commonly encountered materials in historical buildings, namely 
brick masonry, limestone, and plaster finish (Figure 1). The main 
properties of the analyzed materials are summarized in Table 1. 

Risk assessment of fungal contamination is a challenging 
process. Different investigations performed in the same space 
often result in distinct outcomes and sometimes even 
contradicting results. The sampling techniques and detection 
analysis used by the independent consultants or companies 
conducting the inspection significantly affect the study's 
outcome. There are no generally accepted guidelines on the 
procedure to be followed when performing an investigation, and 
therefore, it is hard to get reproducible results [78] -[80]. The 
decisions made before and during an inspection influence the 
species that can be isolated or whether they can even be detected. 
For example, the growth media and cultivation hygrothermal 
conditions will always favor certain species [47]. Bastholm et al. 
showed that when working with fungi, the investigator needs to 
know what to look for [6]. 

 It would, therefore, be of great interest to highlight the 
critical conditions, areas, and materials in historic buildings to 
facilitate their identification at an early stage. This analysis can 
guide investigators and consultants during the decision-making 
process so they can successfully isolate the most relevant of the 
present species. On that note, a summary of the associated 
mycobiota of the examined materials is presented, creating a 
short database for future reference. These connections have been 
drawn from analyzing existing literature on field studies. Table 2 
summarizes the frequently isolated fungal genera and species and 
their associations with the selected building materials. 

2.2. Simulation assumptions 

Hourly dynamic simulations were conducted using the 
DesignBuilder [88] and WUFI [89] software. The first was used 
to predict the evolution of internal environmental conditions of 
the building and evaluate the occurrence of condensation 
phenomena favorable to the growth of fungi. The second was 
used to perform a detailed analysis of the hygrothermal behavior 
of the single structures, particularly the external walls. 

Table 1. Fungi associated with building materials. 

Fungi Genus Fungi Species REF. 

PLASTER 

Acremonium   spp. [61] [47] [81] 

Alternaria  spp. [61] [82] [83] 

Aspergillus niger [82] 

Aspergillus sydowii [84] 

Aspergillus versicolor [84] 

Cladosporium allicinum [5] 

Cladosporium cladosporioides [82] 

Cladosporium sphaerospermum complex [5] 

Geosmithia  sp. [83] 

Lecanicillium kalimantanense [81] 

Mucor globosus [82] 

Parengyodontium album [81] 

Penicillium  sp. [61] 

Penicillium brevicompactum [82] 

Penicillium chrysogenum [81] [84] 

Penicillium corylophilum [84] 

Penicillium palitans [84] 

Penicillium sumatrense [83] 

Purpureocillium lilacinum [81] 

Sarocladium kiliense [81] 

Sporothrix  sp. [61] 

Wallemia  spp. [5] 

BRICK WALL 

Acremonium strictum [85] 

Aspergillus fumigatus [85] 

Aspergillus sydowii [84] 

Aspergillus versicolor [84] 

Cladosporium cladosporioides [85] 

Penicillium chrysogenum [84] 

Penicillium corylophilum [84] 

Penicillium palitans [84] 

Wallemia  spp. [5] 

LIMESTONE 

Acremonium spp.  [81] [47] 

Aeminium ludgeri [86] 

Aspergillus glaucus [86] 

Aspergillus sydowii [84] 

Aspergillus versicolor [84] [87] 

Aspergillus westerdijkiae [86] 

Cladosporium cladosporioides [87] 

Cladosporium langeronii [81] 

Cladosporium sphaerospermum [87] 

Cladosporium tenuissimum [87] 

Epicoccum nigrum [87] 

Lecanicillium kalimantanense [81] 

Parengyodontium album [87] 

Penicillium brevicompactum [86] [87] 

Penicillium chrysogenum [83] [84] [86] 

Penicillium corylophilum [84] 

Penicillium crustosum [87] 

Penicillium glabrum [83] [87] 

Penicillium palitans [84] 

Pseudogymnoascus pannorum [81] 

Sarocladium kiliense [81] 

Stachybotrys chartarum [83] 

Talaromyces  spp. [83] 

Verticillium zaregamsianum [81] 

a)  b)  c)  

Figure 1. Analyzed building materials for historic buildings:  
a) brick masonry, b) limestone, c) plaster. 

Table 2. Properties of the analyzed building materials. 

Material Conductivity, 
W/mK 

Specific Heat, 
J/(kg · K) 

Density, 
kg/m3 

Vapor diffusion 
resistance factor 

Brick  0.84 800 1700 16 

Limestone 1.40 1000 2000 50 

Plaster 0.35 840 950 8.3 
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In DesignBuilder, a test model consisting of a block of 
dimensions 6mx6m, with 30 cm thick walls, was considered. The 
south wall includes a windowed area with a 25% WWR 
(Window–to–Wall Ratio). In particular, the analysis was focused 
on the external walls, for which different materials were 
examined (brick masonry, limestone, plaster finish).  

The building was simulated for two hypotheses. In the first 
case, an occupancy schedule from 8:00 to 18:00 was assumed, 
and the building was equipped with a heating and cooling system 
operating at the same time interval. The set point temperature is 
fixed at 20 °C for heating and 26 °C for cooling. In the second 
case, the simulation was conducted in free-floating conditions, 
assuming that the building is not occupied and not equipped with 
heating and cooling systems. Cultural heritage historic buildings 
often do not have the structural and functional characteristics to 
be regularly used but are kept as archaeological assets, not 
permanently occupied. In these cases, their conservation is even 
more challenging, as the necessary indoor environmental 
conditions to avoid the damage of the construction elements and 
materials are not maintained. An infiltration rate of 0.5 air change 
rate per hour (ach) is considered in both cases. Regarding the 
external conditions, the model was simulated in three locations 
representative of the climatic conditions of Northern, Central, 
and Southern Europe: Helsinki (60.169857, 24.938379), Berlin 
(52.520008, 13.404954), and Rome (41.902782, 12.496365). 
Based on the Köppen-Geiger world map climate classification 
[90], Helsinki belongs to the category “Dfb,” corresponding to a 
humid continental climate with warm summer; Berlin falls within 
the zone “Cfb,” including temperate oceanic climate with cold 
winter and warm summer, without dry season; Rome is labeled 
as “Csa,” Mediterranean climate with hot and dry summer. 
Hourly weather files from the EnergyPlus database [91] were 
employed. The main climatic parameters of the external 
conditions for the selected locations are shown in Table 3. 
Table 4 summarizes the analyzed case studies and the related 
codes. 

 The different cases have been coded in order to facilitate 
reading and understanding. The first letter indicates the material: 
“B” stands for “Brick,” “L” for “Limestone,” and “P” for 
“Plaster.” The second letter refers to the analyzed location: “R” 
for “Rome,” “B” for “Berlin,” and “H” for “Helsinki.” Finally, 
the plus/minus symbol at the end of the code indicates the 
presence (+) or absence (-) of occupants and heating/cooling 
systems. For example, the case study coded BR(+) marks the 
Brick building (B), located in Rome (R), in the scenario with 
occupants and a heating/cooling system (+). The LH(-) case 
study indicates the construction in Limestone (L), located in 
Helsinki (H), in the absence of occupation and systems (-). 
Eighteen case studies were analyzed in total, described in Table 4. 

As for the calculation assumptions in WUFI software, each 
exterior wall has been remodeled using the same materials used 
in DesignBuilder. For the external climatic conditions, the same 
climatic files were used as for DesignBuilder, while for the 
internal climate, the conditions dictated by the EN 15026 
standard [92] were set, with air temperature varying between 20 
and 25 °C and relative humidity ranging between 35 and 65 %. 

3. RESULTS AND DISCUSSION 

Simulation results from DesignBuilder were analyzed in terms 
of internal conditions, characterized by zone temperature and 
relative humidity, and the risk of condensation on the internal 
surface of the vertical walls for the different orientations (North, 
South, East, and West). Critical conditions emerged for all the 
analyzed cases, with greater intensity for the unoccupied building 
without heating and cooling systems. The graph in Figure 2 
shows the percentage of occurrence (calculated based on the 

Table 3. Climatic conditions for the analyzed locations. 

Location Tmax, °C Tmin, °C Average annual RH, % Wind speed, m/s 

Helsinki  28.7 -21.4 79.2 3.8 

Berlin 32.7 -8.8 73.5 4.2 

Rome 31.1 -4.1 76.7 2.8 

Table 4. Case study definition. 

Case 
study 

Material Location 
Heat/Cool. 
system and 
Occupancy 

Brick Limestone Plaster Rome Berlin Helsinki Yes No 

BR(+) v   v   v  

BR(-) v   v    v 

BB(+) v    v  v  

BB(-) v    v   v 

BH(+) v     v v  

BH(-) v     v  v 

LR(+)  v  v   v  

LR(-)  v  v    v 

LB(+)  v   v  v  

LB(-)  v   v   v 

LH(+)  v    v v  

LH(-)  v    v  v 

PR(+)   v v   v  

PR(-)   v v    v 

PB(+)   v  v  v  

PB(-)   v  v   v 

PH(+)   v   v v  

PH(-)   v   v  v 

a)  

b)  

Figure 2. Percentage of hours over the total (based on simulation steps) in 
which RH values are equal to or higher than 75% and 80%, grouped by: 
a) material and b) location. 
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hourly simulation intervals) in which a relative humidity equal to 
or higher than 75% and 80% is recorded, grouped based on the 
building material (Figure 2a) and the location (Figure 2b). 

It is worth noting that relative humidity not only reaches high 
values but is also maintained for long periods, favoring moisture 
condensation and, thus, the germination of fungal spores. 

For example, the graphs in Figure 3, Figure 4, and Figure 5 
depict the surface temperature of the north-facing wall and 
relative humidity of the air for the case studies LR(-), LB(-), and 
LH(-), related to the building with external walls with limestone, 
not occupied and not equipped with heating/cooling systems, 
for the three analyzed locations. 

The graphs in Figure 6, Figure 7, and Figure 8 illustrate the 
trend of the monthly surface temperature of the wall facing 
north, compared to the dew point temperature curve, for the 
three analyzed locations. The construction is in limestone, the 
building is unoccupied, and there are no heating and cooling 
systems. For the considered period (a winter month), the surface 
temperature drops several times below the dew point, resulting 
in condensation. 

As seen from Table 5, the risk of condensation is present in 
all the simulated cases. The abacus highlights the months in 
which condensation occurs at least in one simulation interval. It 
should be noted that condensation generally occurs on all the 
walls (N, S, E, and W). However, the risk is generally greater for 
north-facing walls. 

 

Figure 3. Surface temperature (north-facing wall) and relative humidity of the 
air for LR(-) (Limestone, Rome, no occupancy and no heating/cooling 
systems). 

 

Figure 4. Surface temperature (north-facing wall) and relative humidity of the 
air for LB(-) (Limestone, Berlin, no occupancy and no heating/cooling 
systems). 

 

Figure 5. Surface temperature (north-facing wall) and relative humidity of the 
air for LH(-) (Limestone, Helsinki, no occupancy and no heating/cooling 
systems). 

 

Figure 6. Surface and dew point temperature trend for the north-facing wall 
for LR(-) during January. 

 

Figure 7. Surface and dew point temperature trend for the north-facing wall 
for LB(-) during December. 

 

Figure 8. Surface and dew point temperature trend for the north-facing wall 
for LH(-) during January. 
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The dynamic hygrothermal simulations carried out using the 
software WUFI have provided further information on the heat 
and humidity transfer through the building envelope. The 
transient hygrothermal response was assessed for the different 
wall assemblies subject to various climates. 

The humidity level in the structures is not constant but varies 
over time. Naturally, the moisture content level varies according 
to the material's physical properties, determining its hygroscopic 
characteristics. The profiles illustrated in Figure 9, for the 
external north-facing wall in Berlin, reveal that limestone can 
absorb more humidity. In fact, it shows that its humidity content 
varies between 6.37 and 7.30 kg/m2, followed by plaster (4.92-
5.87 kg/m2), and finally, by brick masonry (1.82-3.28 kg/m2). 

In addition to the intrinsic characteristics of the material, the 
humidity content also varies significantly according to the 
climatic conditions to which the structure is exposed. The graphs 
in Figure 10, Figure 11, and Figure 12 show the moisture content 
profiles in the layers created for the simulated construction 

materials (brick, limestone, and plaster) for the north wall of the 
three locations. The results show that the same material, 
subjected to different climatic conditions, can absorb a variable 
quantity of humidity. 

The results show that the moisture content in the structure 
affects the thermal transmittance, which tends to increase as the 
humidity content in the layer increases. Consequently, the 
thermal transmittance, in real operating conditions, will vary 
dynamically according to the humidity content. Higher 
transmittance values lead to an increase in heat loss, with a 
consequent reduction of indoor air temperature and the surface 
temperature distribution, thus increasing the condensation risk. 

 

Table 5. Occurrence of condensation for the analyzed case studies. 
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Figure 9. Moisture content within the various building materials under the 
climatic conditions of Berlin.  

 

Figure 10. Moisture content within the “Brick” layer for the 3 locations 
(north-facing wall).  

 

Figure 11. Moisture content within the “Limestone” layer for the 3 locations 
(north-facing wall) 

 

Figure 12. Moisture content within the “Plaster” layer for the 3 locations 
(north-facing wall) 
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Figure 13, Figure 14, and Figure 15 show the transient values 
for the thermal transmittance of walls for the different building 
materials and locations. Based on the analysis results, the thermal 
transmittance may increase to approximately 12% due to the 
increase in humidity. 

The simulations’ outcomes show the occurrence risk of 
favorable conditions for fungal growth on the inner surface of 
building materials. Different solutions can be suggested to 

prevent or mitigate this risk, and they can be classified as passive 
measures, active measures, and chemical treatments. 

Passive strategies aim to maintain the external walls at a higher 
temperature to avoid cold surfaces and, thus, the condensation 
of water vapor. To this end, the most suitable solution would be 
to apply a thermal insulation layer, preferably on the external 
side, to keep the entire wall at a higher temperature. In the case 
of historic buildings, though, this type of intervention could 
collide with limitations about altering the facades that can 
compromise the historical and artistic value of the building. In 
order to maintain the aesthetic value of the buildings intact and 
preserve their peculiarities over time while improving the thermal 
transmittance of the envelope, a solution could be to apply 
specific thermo-plasters with low thermal conductivity on the 
building’s external surfaces. Thanks to the use of fibrous 
insulation, organic or inorganic, and natural limes, these materials 
maintain similar thermo-hygrometric characteristics to 
traditional masonry and, therefore, can be perfectly compatible. 
Moreover, their breathability and high permeability allow the 
balancing of indoor humidity, thus avoiding the formation of 
condensation and mold. The latest research developments in this 
area have made available highly performing materials that can 
provide appropriate levels of thermal insulation, just a few 
centimeters thick. Furthermore, products based on natural 
materials (such as cork) are becoming widespread, allowing 
interventions in compliance with environmentally sustainable 
requirements. 

Active measures include implementing ventilation strategies 
to regulate indoor humidity levels. Ventilation can be activated 
in two cases: for high occupancy or when the specific internal 
humidity X (gv/Kga) exceeds the external humidity level. 
However, the installation of ventilation systems could be 
incompatible with the protection constraints for archaeological 
heritage. Therefore, a less invasive intervention could be a 
decentralized ventilation unit. These devices are able to ensure 
adequate air exchange and are designed to optimize architectural 
integration, as they have a minimal visual impact. Furthermore, 
they can be easily controlled through smart, IoT-based 
technologies, allowing control logic implementation to maintain 
the desired internal conditions. An alternative solution, which 
can be adopted when the building’s geometric configuration 
allows it, is that of "displacement ventilation." Based on the 
principle of natural air buoyancy, this technique introduces fresh, 
clean air at floor level, pushing the warm air and contaminants 
upwards to be extracted at ceiling level. This system could also 
be managed through automation and intelligent control.  

Chemical treatments are substances used to eliminate fungal 
formations and prevent or reduce the onset of bio-colonization 
and biodegradation. For example, Ding et al. [93] investigated the 
use of low-pressure plasma etching to remove microbial biofilm 
from building limestones. This innovative technique was found 
especially effective in cleaning microbial contaminations. 
Furthermore, plasma etching is able to decompose and eliminate 
the sugar-containing compounds on the limestones, which is the 
primary nutrient for microbial reproduction, thus inhibiting 
microbial growth. 

Organic biocides are commonly used to reduce the bio-
colonization of construction materials. It is possible to prolong 
the recolonization period by combining the application of 
organic and inorganic active elements. Ruffolo et al. [94] 
developed a new product based on pure or doped titanium 
dioxide nanoparticles (TiO2), which was tested on the southeast 
wall of Villa dei Papiri covered with plaster in the archaeological 

 

Figure 13. Transient values of the thermal transmittance of the external wall 
(Brick) for different locations.  

 

Figure 14. Transient values of the thermal transmittance of the external wall 
(Limestone) for different locations.  

 

Figure 15. Transient values of the thermal transmittance of the external wall 
(with internal finish in plaster) for different locations.  
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site of Herculaneum, Naples (Italy). Ślosarczyk et al. [95] 
investigated the efficacy of metal and metal oxide nanoparticles, 
such as silver, titanium dioxide, or zinc oxide, in improving the 
resistance of building materials (e.g., brick, limestone, mortar) to 
biological damage by offering antimicrobial activities. These 
nanostructures can enter the cells of microorganisms and alter 
their behavior, leading to inactivation. TiO2 nanomaterials and 
their composites can be used in anti-biofouling coatings thanks 
to their antialgal, antifungal, and antibacterial properties for 
different materials (limestone, marble, brick, wood, glass, 
cementitious surfaces, and others) [96]. Pastor et al. [97] worked 
on optimizing several complexes of the biocide carbendazim 
with clays for its potential use as antimicrobial additives in 
restoration mortars. Brick surfaces can be coated with zinc and 
silver nanoparticles to achieve hydropic, photocatalytic, and 
antibacterial properties [98]. This treatment inhibits a broad 
spectrum of microorganisms, such as viruses, fungi, and bacteria. 
Finally, a composite coating was prepared by Wang et al. [99] to 
enhance the resistance of ancient bricks to atmospheric agents, 
bacteria, and algae. 

The protection of historical and cultural heritage plays a 
crucial role in modern society. Working groups have been 
dedicated to defining the tools to evaluate the needs and impacts 
of conservation, collecting all types of knowledge, even tacit 
knowledge [100]. Preventive conservation is a proactive 
approach to avoid or minimize damage and deterioration to 
cultural heritage and artifacts [101], while it is also practical from 
a cost perspective [102]. 

Of course, conservation measures vary depending on the 
object of protection, for example, sites, buildings, art collections, 
etc. [103]. Various international organizations operate in this 
sector. They have a fundamental importance in providing 
recommendations and guidelines for cultural heritage 
conservation, particularly concerning environmental conditions. 
Some of the leading organizations are the “International Council 
of Museums” (ICOM), which provides guidelines for various 
aspects of museum management, including conservation 
practices and environmental conditions; the “International 
Centre for the Study of the Preservation and Restoration of 
Cultural Property” (ICCROM), which focuses on conservation 
and restoration, offering expertise and resources to professionals 
in the field; the “International Council on Monuments and Sites” 
(ICOMOS) that is dedicated to the conservation and protection 
of cultural heritage sites; the “Getty Conservation Institute” 
(GCI), addressing various aspects of conservation, including 
environmental management and the impact of climate on 
cultural heritage; the “Canadian Conservation Institute (CCI)” 
which is known for its work on environmental issues affecting 
cultural heritage, such as the impact of humidity. Regarding 
environmental recommendations, the organizations generally 
emphasize maintaining stable and controlled conditions, 
particularly for humidity and temperature, to prevent damage to 
cultural artifacts. Some of the key recommendations include the 
following: 

• Temperature and Relative Humidity Control: Keeping 
stable temperature and relative humidity levels to 
prevent fluctuations that can lead to condensation, 
mold growth, and other forms of biodeterioration. 

• Light Control: Protecting artworks from excessive 
exposure to light, particularly UV radiation, to prevent 
fading and other light-induced damage. 

• Air Quality: Ensuring good air quality to prevent 
pollutants and contaminants that can adversely affect 
cultural materials. 

• Storage and Display Guidelines: Providing 
recommendations for appropriate storage and display 
conditions for various types of artifacts. 

The findings from this study can significantly contribute to 
establishing criteria and guidelines for safeguarding and 
preserving historical heritage against biodeterioration.  

4. CONCLUSIONS 

This study has provided a reference database of fungal genera 
and species associated with some commonly used materials in 
historical buildings. In typically uninsulated envelopes such as 
those analyzed, the study showed the formation of condensation 
according to the boundary conditions. In particular, the analysis 
highlights that high relative humidity conditions are generated 
when heating and cooling systems are not present. However, 
condensation occurred in different percentages in all the 
examined cases. This demonstrates the challenge of preserving 
historic buildings, as the occurrence of condensation creates a 
high risk for fungal growth. Regarding the studied materials, 
limestone is the most vulnerable to condensation. 

Three solutions have been suggested to prevent fungal 
development in buildings. Passive measures, based on thermal 
insulation, to keep the structures' surface temperature higher 
than the surrounding air. Active measures, to lower the relative 
humidity levels in indoor environments. Finally, chemical 
treatments, involving the use of particular substances capable of 
removing the fungal colonies from the material's surface and 
preventing germination. The identified measures can be used 
separately or in combination and are applicable in compliance 
with the constraints to which historical and archaeological 
heritage buildings are usually subject. 

The present study has some limitations. The analysis was 
conducted on an ideal building model, for which specific 
calculation assumptions were adopted. Furthermore, the weather 
files used in the simulation do not include data for pouring rain, 
which can affect the moisture content in the structures, 
modifying heat and mass transport results. Future studies should 
aim to model an existing building in actual usage conditions and 
to perform simulations considering rainfall data. 
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