
ACTA IMEKO
ISSN: 2221-870X
September 2023, Volume 12, Number 3, 1 - 11

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 1

Use of the kth-nearest neighbour and its analysis for fall
detection on Systems on a Chip for multiple datasets

Purab Nandi1, K. R. Anupama1, Himanish Agarwal1, Arav Jain1, Siddharth Paliwal1

1 Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa -403726, India

Section: RESEARCH PAPER

Keywords: SoCs; Wearable; IoT; ML; k-NN

Citation: Purab Nandi, K. R. Anupama, Himanish Agarwal, Arav Jain, Siddharth Paliwal, Use of the k-nearest neighbour and its analysis for fall detection on
Systems on a Chip for multiple datasets, Acta IMEKO, vol. 12, no. 3, article 51, September 2023, identifier: IMEKO-ACTA-12 (2023)-03-51

Section Editor: Francesco Lamonaca, University of Calabria, Italy

Received February 28, 2023; In final form July 17, 2023; Published September 2023

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Corresponding author: Purab Nandi, e-mail: p20200056@goa.bits-pilani.ac.in

1. INTRODUCTION

Medical and healthcare advancements have increased the
average human lifespan to over 80. Geriatric healthcare hence
has become vital, and regular monitoring of parameters is
required. Currently, visiting, or in-house nursing staff monitor
various parameters; such an arrangement is expensive for a
significant part of Indian society. The past decade has witnessed
substantial advances in IoT (Internet of Things)-based wearable-
based health devices and their integration with machine learning
and deep learning; remote diagnosis, prognosis, and treatment
can be performed using IoT-based medical-grade devices. Hence
advances in IoT, embedded systems and ML (Machine Learning)
are the catalysts in developing geriatric healthcare systems. Such
systems are available at a reduced cost for detecting anomalies
and raising timely alerts, assistance and care when required. Such
a system is essential in a country like India, with a rising
population of seniors residing in isolation. Some common
concerns of the geriatric population include falls, sleep apnea,
hiatus hernia, and other respiratory disorders that do not have a

surgical solution, and the primary cause is frailty. Medical
literature [1] also indicates that these disorders generally
compound into life-threatening disorders.

Sensors monitor multiple health conditions and relay data to
an intelligent ML-based system that can detect and predict the
condition. In this paper, we concentrate on geriatric fall
detections. The causes of the falls can be internal or external.
External causes of falls are due to environmental factors like
slippery surfaces. Internal causes include cramps, weakness in the
muscular-skeletal structure, vision impairments, chronic
disorders, and other ailments. The duration of the fall is also
essential. According to [2], about 40 % of the individuals who
fall cannot get up on their own, and about 50 % who experience
a long fall are likely to die within the next few months. A long-
duration fall can also result in localized muscle injury, tissue
damage, nerve issues, dehydration, hypothermia, pneumonia,
and a fear of further falls. These conditions affect the overall
health of the geriatric population. Although numerous studies [3]
related to fall detection have been out recently, several challenges
still exist. These include

ABSTRACT
Fall of an elderly person often leads to serious injuries and death. Many falls occur in the home environment, and hence a reliable fall
detection system that can raise alarms with minimum latency is a necessity. Wrist-worn accelerometer-based fall detection systems and
multiple datasets are available, but no attempt has been made to analyze the accuracy and precision. Wherever the comparison does
exist, it has been run on a cloud. No analysis of the models, convergence, and dataset analysis on Systems on a Chip (SoCs) has ever
been attempted. In this paper, we attempt to present why Machine Learning (ML) algorithms in their current state cannot be run on
existing SoCs.
We have used Snapdragon 410c SoC to do our analytics. In this paper, we have used the kth-nearest neighbour to prove that ML cannot
be directly run on SoCs. We have looked at the effect of distance metrics and neighbors as well as the effect of feature extraction on the
accuracies and the latencies. In this paper, we establish the need for model compression and data pruning for fall detection using
ML/Deep Learning algorithms on SoCs. We have done this by analyzing various datasets on varying architectural parameters.

mailto:p20200056@goa.bits-pilani.ac.in

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 2

1. The lack of a comprehensive analysis of ML techniques
deployed to detect falls,

2. A high number of false positives,
3. The systems that detect and correct such false positives

have low accuracy,
4. The inability of the system to detect the duration of the

fall.
With technological advances in SoCs (System on Chip) and

IoT systems, wearable devices have emerged as a leading area of
research in geriatric health care; the amount of data collected at
homes/hospitals for the elderly is large and complex and making
accurate decisions based on multiple parameters is the primary
requirement for such safety-critical systems. SoCs are resource-
constrained devices in terms of memory, processing power or
energy constraints. Hence, they cannot implement ML
algorithms or Deep Neural Networks. Hence a possible solution
for this is the use of model compression. This paper selects one
of the simplest ML algorithms. This algorithm is validated using
varying datasets of different sizes. We have done this to prove
that running even a simple ML algorithm such as k-NN (Kth
Nearest Neighbour) is impossible when the data set size is
considerable. Not only is the latency high but as the size of the
dataset increases, the SoC fails, indicating the non-availability of
the required resources. This paper proves that ML algorithms
give inaccurate, non-reliable and high latency results when run
on a raw data set. Hence this paper builds a case for using model
compression algorithms while using SoCs.

The organization of the rest of the paper is as follows: Section
2 talks about various IoT architectures employed in fall
detection, Section 3 gives a brief overview of ML algorithms used
for fall detection, Section 4 provides the operational details of k-
NN, Section 5 gives the details of the dataset used for analysis,
we present our results in Section 6, and Section 7 summarises
and concludes this paper.

2. ARCHITECTURAL MODELS FOR IOT BASED FALL
DETECTION SYSTEMS WITH WEARABLE END DEVICE

With the growth of SoCs and their integration with IoT
systems, wearable healthcare devices are now a focused research
area. This section presents four possible IoT architectural models
for healthcare applications. The variation in the models is in data
gathering, processing and the conversion of data to knowledge.

1. Model A – In this architectural model, the data is

collected at regular sampling intervals from the sensors

of the wearable devices, which forwards the data to the

coordinator. The coordinator then collects the data

from multiple wearables and transfers the data to the

cloud. The data analytics using ML/DL (Deep

Learning) algorithms is performed on the cloud. The

end devices have constrained processing and memory

capabilities in such an architecture. The coordinator

only acts as a data forwarder. Figure 1 gives the

schematic diagram of Model A. The research focus of

this architecture is usually on developing networking

protocols that can transmit the data to the cloud with

minimum loss and latency with low control overheads.

2. Model B – In this architectural model, the wearable end

device collects the raw data and transmits it to the

coordinator. The coordinator not only forwards the

data to the cloud but performs sensor fusion prior to

forwarding the data. The cloud then uses the fused data

to extract the required features and converts the data to

health decisions using ML/DL algorithms. Figure 2

gives the schematic diagram of Model B. In this model,

the coordinator architecture is as important as the

network protocols; preferably, SoCs are used as

coordinators.
3. Model C – In the case of architectural model C, powerful

end devices collect data from multiple sensors, run
sensor fusion algorithms then forward the data to the
coordinator. The coordinator then runs ML/DL
algorithms for data analytics on the fused data. The data
analytics performed on the coordinator are for short-
term health monitoring. In contrast, the analytics run
on the cloud to which the co-ordinator forwards the
data are for long-term health monitoring. The end
devices are powerful enough to run sensor fusion
algorithms. Figure 3 gives the schematic diagram of

Figure 1. IoT architectural Model A.

Figure 2. IoT architectural Model B.

Figure 3. IoT architectural Model C.

Figure 4. IoT architectural Model D.

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 3

Model C. The server-class coordinators still run the
ML/DL algorithms. Hence, latencies will still be
involved in making short-term health decisions due to
the latency in transmitting data between the end device
and the coordinator.

4. Model D – Figure 4 gives the schematic diagram of
Model D. In the case of architectural model D, the
wearable device is built using a powerful SoC as it
collects data from multiple sensors, fuses it, and runs
ML and DL algorithms to detect/predict falls. The
wearable device, in this case, requires considerable
processing power; the wearable device is required to
collect and clean the data, perform sensor fusion,
extract the required features, and then convert the data
into information using a complex ML/DL algorithm.

Though SoCs have considerably advanced to handle complex
biomedical applications, they are still constrained in the amount
of memory available, energy consumed and form factor. As the
device is wearable, the form factor must be significantly less. At
the same time, power consumption must also be limited. Heat
dissipation is another issue that is common in wearable devices.
Running complex processing algorithms will cause the processor
to expend more heat. Hence, running ML, DL, or Deep Neural
Networks widely used in IoT-based health services is difficult.
Over the last couple of years, research in model compression of
ML and DL algorithms has gained traction. The goal of model
compression is to achieve a simplified model compared to the
original with the same level of accuracy as the original algorithms.
The advantage of running a reduced model is that fewer or
smaller parameters need to be stored in the memory, as not only
is the data resident in memory, but the operating system and the
code are also resident in the memory. The processing latency is
also expected to be reduced, allowing the model to predict in a
shorter duration. In model D, the coordinator again acts as a
forwarder of information, and the cloud runs long-term health
monitoring and rehabilitation algorithms. The advantage of
having the SoCs run the compressed algorithms is that alarms
can be raised in case of falls, even when no network connection
is available. Bad connectivity reduces the lie-in period after the
fall, reducing complex health situations that might arise due to
long lie-in periods.

2.1. Model D and available wearable devices in the market

IoT applications are classified into different levels based on
the complexity of the application and the complexity of the
elements used to build them. In the case of the models A, B and
C described in this section, data storage and analytics is not done
on the wearable device. Health monitoring systems usually
collect a large amount of data from multiple sensors. The size of
the data is large and requires complex data analytics. Hence using
the usual classification of IoT systems, the data storage and
analytics must be primarily performed on the cloud. While this
model works well for long-term health monitoring and
rehabilitation, it is unsuitable for emergency services. In our
suggested model D, we store some of the data and run the
complex data analytics on them to handle an emergency such as
falls; hence each end device has a very powerful SoC at its core.
We plan to use SoCs such as Qualcomm Snapdragon
410c/820c/wear 4100 series built explicitly for biomedical
applications. Running ML /DL applications especially requires
high processing power. Hence if the analytics for emergency care
must be performed on wearable devices, we need to use
compressed ML algorithms.

We have reviewed multiple fall detection-based systems [4]
available commercially and under theoretical research. In the
following subsection, we briefly overview such fall detection
systems.

2.2. Commercially available systems and their applications

Apple Watch SE or series 4 [5] and above can detect hard
falls. For people above 55 years of age, these services are enabled
automatically. The "Apple Watch fall detection app" can help
connect users to emergency services while sending messages to
their emergency contacts. Apple Watch can detect only hard falls.
It uses accelerometer and gyroscope data to detect a fall. It uses
impact acceleration and the resultant wrist trajectory for fall
detection. To detect falls, it uses thresholding technology on the
data, and no ML/DL algorithms are run on the wearable system.
Apple Watch also detects if a person is immobile for 60 seconds;
it then begins a 30 second counter that starts an audio alert. The
audio alert keeps getting louder until emergency services press
"cancel". Despite the availability of such features, experimental
data show the accuracy is only 4.7 per cent; it has a false-negative
rate of 95.3 per cent, and an interesting point is also that Apple
watches are better at detecting forward falls than sideways falls
because the wrist movement in sideways fall is equivalent to lying
down in bed.

Another smart wearable device available is the "Unali
Kanega" watch [6], another wrist-based device for fall detection.
It also makes use of accelerometer data to detect falls. The Unali
watch is unique because the user can charge the battery while still
wearing the watch. This feature is helpful since falls may occur
when the user removes his watch to charge.
There is also the Phoenix watch available which has an app called
WellB Medical Alert Plus that sends out the GPS location of the
fallen person when he presses the button.

Other than the wearable systems available commercially, there
are also applications which can run on the mobile. The summary
of the applications and their capability is listed in the table given
below. All the applications require that a user either presses a
button or uses some form of an audio alert. The application will
only provide the GPS location of the person. (Wherever GPS+
is mentioned in the table, it also uses Wi-Fi information to detect
the person's position).

There is also the popular "fall call lite application" [7], which
usually runs on the Watch Operating Systems. Here the user
must press a button and call for help when he falls. These
applications are rare as they require that the person be still
conscious and can raise an alert.

2.3. The wearable devices under research

[8] talks about a smart vest that can monitor respiratory and
physical activities. The M-health platform [9] described as part of
the "Frail" project has a smart vest, fall sensors, and a
SmartWatch.

The sensing platform aims to address the continuous
monitoring of vital signs relevant to frail users and detecting and
alerting falls. The smartWatch worn by the user acts as the
gateway to the platform, gathering data from sensors and
receiving events and reminders introduced by caregivers. Since
the SmartWatch is responsible for communication with the frail
servers, the end devices and the sensing platforms only need to
send the sensor data.

Hence, this falls under model C of the IoT architecture
described in section 2. Table 1 gives a summary of a few
commercially available wearable devices which are used for Fall

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 4

Detection. For fall detection, mainly accelerometer-based
devices are used. Also, after the accelerometer detects the fall,
the SmartWatch expects the wearer to confirm that he/she has
fallen. If the user confirms the fall, SmartWatch returns the event
to the frail servers and triggers a preconfigured procedure.

The sensor module used is a tri-axial accelerometer, and the
processing module is a PIC 18F2431 Microcontroller which uses
a thresholding method to detect falls. The sensors are placed as
an adhesive patch on the skin of the lower back. Again, this
system does not use multiple sensor data or machine learning
algorithms to detect falls. Further research shows that most fall
detection systems use Model A, while the rest may use Model B,
where sensor fusion is done on the coordinating device. The
research that we are doing will be the first attempt to build a
wearable SoC device that runs compressed ML/DL algorithms
that provide auto alerts for emergency help.

3. MACHINE LEARNING

ML [10] is a technique that applies mathematical models to
data sets to analyse, classify and convert data into knowledge.
There are three types of ML algorithms.

Supervised Learning: In supervised learning, the input data is
classified a priori using a training data set; any new data is
automatically classified into one of the input types, some of the
algorithms include k-NN [11], Naïve Bayes [12], Decision trees
[13], Linear Regression [14], Support Vector Machine (SVM)
[15].

Unsupervised: In unsupervised learning, the ML algorithm
recognizes a pattern on its own from a given data set; some of
the standard algorithms include K-Means clustering [16],
Classification rules [17], Hidden Markov model [18], Neural
Networks [19].

Reinforced: This algorithm allows the system to adapt its
behaviour based on feedback from the environment.

In the case of fall detection, binary classification is used to
classify an activity into a fall or Activities of Daily Living (ADL).
The diagram given below shows how the ML model is built. The
data is collected and cleaned for incorrect sensor readings, and
the statistical features are extracted before training.

In each category of ML, there are several algorithms, as shown
in Figure 5.

For fall detection, several ML algorithms are currently being
used. Commonly used algorithms are Logical Regression, Naïve
Bayes, SVM, k Nearest Neighbour and Random Forest. Among
these algorithms, this paper concentrates on the k-NN algorithm.
We had earlier run multiple ML algorithms for fall detection. The
AUC (Area Under Curve)/ROC (Receiver Operating
Characteristic) curve for them is shown in the Figure 6.

The algorithms were run on the data set that we had collected.
The dataset had over 70k points, of which 70 % was used for
training and 30 % was used as test data. k-NN has a good AUC
score of 0.971, performing as well as SVM. We have used k-NN
to analyse the latencies involved in an ML algorithm as the
accuracies of k-NN are good, and k-NN does not require any
pre-training until a query is raised. Hence, k-NN is the best
model to understand the effect of implementing ML on SoCs, as
no heavy pre-training is required, unlike the other algorithms.
While Naïve-Bayes is easier to implement, its AUC score is only
0.825, which is very low compared to k-NN.

4. K-NEAREST NEIGHBOR CLASSIFICATION ALGORITHM

The problem presented in this paper consists of an ML
algorithm that classifies features extracted into fall and non-fall.
We wanted to use a classification technique with good accuracy
and minimum complexity as we plan to implement the ML
algorithm on the End device. In this paper, we have used k-NN
[20]. The k-NN algorithm does not require a choice of a specific
classification model or feature selection; it only requires a suitable
metric to evaluate the distance between features. The k-NN
algorithm depends upon a key parameter[21], a priori fixed k; the
value of k is a critical parameter for the algorithm as it is the

Table 1. The summary of commercially available wearables.

Product
Automatic

fall detection
Location

capability
Battery life

GreatCall Lively Mobile Plus Yes GPS 1-3 days

Philips Lifeline GoSafe 2 Yes GPS+ 2-3 days

Medical Guardian Active
Guardian
(rebranded version of the
Freeus Belle+)

Yes GPS+ up to 5 days

LifeFone At home, On-the-
Go GPS, Voice in Pendant
(rebranded version of
the Freeus Belle+)

Yes GPS+
up to 5 days

(30 days if no fall
detection capability)

LifeFone At home, On-the-
Go GPS (rebranded version
of the MobileHelp Duo)

Yes GPS
1 day (mobile base

station),
pendant: long

MobileHelp Duo Yes GPS
1 day (mobile base

station),
pendant: 18 months

Medical GuardianMini
Guardian

Yes GPS+ up to 5 days

Figure 5. Schematic of ML Model.

Figure 6. AUC/ROC for Fall detection.

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 5

primary source of variation in accuracy. A further parameter of
the algorithm is the selection of the distance metric between the
points such as Euclidean, Manhattan, Minkowski, and Hamming.
The k-NN schematic diagram used for classification for a k value
of 3 is shown in Figure 7.

Three distance metrics used in this paper are
1. Euclidean
2. Manhattan
3. Minkowski [21].

The Euclidean distance is calculated using the formula given
below

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 . (1)

The Manhattan distance is the distance between two points
measured along the axis at right angles and uses the following
formulae for calculating the distance

𝑑 = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| . (2)

The Minkowski distance comes somewhere between
Manhattan and Euclidean. The Minkowski distance is given by

𝑑 = {|𝑥2 − 𝑥1|𝑝 + |𝑦2 − 𝑦1|𝑝)1/𝑝 . (3)

The Hamming distance is a special case of Minkowski
distance, the Hamming distance between two strings of equal
length results as the number of positions at which the
corresponding symbols (0/1) are different.

The Hamming distance equation is given by

𝑑 = ∑|𝐴𝑖 − 𝐵𝑖| . (4)

The effect of the parameter p on the behaviour of the k-NN
algorithm while using Minkowski distance was also analysed.
According to previous research [22], distance plays a pivotal role
in studying disease patterns. We tried varying values of p, starting
from 0.5 to 12, and we found that the maximum accuracy was in
the range of 1.2 to 1.5. So, we ran the k-NN algorithm using the
Minkowski distance estimator to find the ideal combination of p
and k values. The detailed description is described in the results
section.

5. DATASET AND DATA PREPERATION

The size of the data set, the data collection methodology used,
the nature of the sensors, and the sampling rate affect the model's
output. Research in fall detection has advanced over the last few
years due to the increase in the elderly population who live alone.
Multiple fall data sets are available, and various data sets [23] have

been analyzed in detail. When coming to falls, the sensors used
for fall detection can be (a) Biological, (b) IMU, (c) Image (d)
Ambient sensors—the first two fall under the wearable sensor
category. The latter are non-wearable. Biological sensors might
be heart rate sensors, GSR sensors, SpO2 sensors or sensors
based on the previous health history of the person. IMU sensors
include a 3D accelerometer and gyroscope. Image sensors are
monochrome/RGB/Thermal cameras/IR cameras, which
detect falls. Ambient sensors are usually placed around the entire
room occupied by the elderly. This system includes radar and
acoustic sensors, which are used for detecting falls.

Wearable sensors are preferred because they can follow the
elderly through their daily routine. Multiple wearable sensors,
primarily IMU-based sensors, are available, most of which use
3D accelerometers. 80 % of the data set available currently have
waist-worn accelerometer sensors. Some supplement the waist-
worn sensors by placing the sensors on the thigh or leg of the
sensor. Few data sets place sensors all over the torso. Wearing
sensors on the waist and the torso can be highly uncomfortable
for the elderly as these sensors have to be worn for the entire
day. This paper focuses on wrist-worn sensors as we strongly
believe a wrist sensor is more convenient for an elderly user. The
sensor data can constantly be augmented appropriately using
mathematical models.

Furthermore, multiple fitness bands in the market provide

IMU and heart rate, blood pressure, and oxygen levels, and these

devices can very quickly be adapted for fall detection. Fitness

bands come with their SoCs, so we believe we can adapt ML

algorithms to be run locally on the device and the data to be

stored locally for short-term health emergencies such as falls. We

examined multiple datasets which used 3D accelerometers and

looked mainly at data sets where the sensors were worn on the

wrist. SmartWatch, SmartFall and Notch datasets are available

publicly, so we used them. We also collected data using ten

volunteers wearing a TicWatch (BITS dataset).

Data collection methodology for BITS dataset
We gathered our data using ten volunteers wearing a

TicWatch, including a 3-axis accelerometer, 3-axis
magnetometer, 3-axis gyroscope, and optical heart rate sensor.

Experiments were performed in a controlled environment in
20 different ADL/fall activity simulations, such as walking,
running, climbing stairs, abrupt movements, and various types of
falls. Using a TicWatch, data was collected at four
samples/second, the maximum possible frequency.
The volunteers were aged between the ages of 20 -22 years. Their
height ranged from 5 ft 1 in to 5 ft 8 in, and their weight was
from 40 kg to 75 kg.

Experiments were performed across 20 different ADL/fall
activity simulations, such as walking, running, climbing stairs,
and abrupt movements. The volunteers simulated the following
activities: (a) Walking slowly, (b) Walking quickly, (c) Jogging, (d)
Climbing up and down a flight of stairs, (e) Slowly sitting on a
chair, waiting a moment, and standing up slowly (f) Quickly
sitting on a chair, waiting a moment, and standing up quickly (g)
Trying to transition from sitting to standing position but
collapsing midway (h) Transitioning from sitting to lying and
back, slowly (i) Transitioning from sitting to lying and back,
quickly (j) Transitioning from sideways position to one's back
while lying down (k) Standing, about to sit down, and getting up
(l) Stumbling while walking (m) Slowly jumping without falling
(n) Swinging hand (o) Falls – forward, backwards, left lateral,
right lateral (p) Grabbing while falling (q) Spinning fall.

Figure 7. Classification Schematic of k-NN algorithm (k = 3).

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 6

To collect the data the TIC watch was programmed to collect the
data and send it via the user interface to the system. The data was
automatically moved into a .csv file. The software's user interface
had buttons for every type of activity performed, so the
corresponding button was selected before performing a
particular activity. The button enabled automatic labelling of the
dataset as it got stored.

IMU and heart rate samples were collected during 14 ADLs
and 6 falls, with each activity/fall repeated twice. All activities
were conducted at the BITS Pilani, K K Birla Goa campus. The
falls were simulated in a controlled environment. The anechoic
chamber at BITS Pilani, K K Birla Goa campus, was used for
this purpose. The chamber, 4.5 m × 2.2 m × 2.5 m, is padded
with NRL USA standard 8093 complying material on all four
walls, the floor, and the ceiling. This padding provided the
necessary shock absorption capabilities to protect volunteers
from any harm during the experimentation.

The volunteer's rebound and residual movements after a fall
activity were also considered to ensure that the data set contains
post-fall IMU and heart rate parameters. Hence for falls, the data
collection was stopped not immediately but a few seconds after
the actual event occurred. During that time, the volunteers
performed post-fall movements such as rolling over and
attempting to get up. The data set generated had, in total, over
110,000 lines about the ADLs as mentioned above and falls.

In the case of the BITS data set though we collected data
using 3-axis accelerometer, magnetometer, and gyroscope as well
as an optical heart rate sensor, we used only the data from the 3-
axis accelerometer to study the accuracies over the other data
sets. Since we filtered out the other sensor and only used a 3-axis
accelerometer, the data points were reduced from 110,000 to
47,656.

Data preparation for SmartFall, SmartWatch and Notch
SmartWatch dataset [24] – SmartWatch had 7 subjects aged

21 to 55 who performed 971 different activities. Each datapoint
was collected at a sample rate of 31 Hz. To match it with our
data set, we downscaled it to 20 kHz using the Python SciPy 1.2.3
package; overall, there were 34,019 data points.

Notch dataset [25] – The Notch data set has only 7 subjects
aged 20-35. Overall, Notch had 10,645 data points; the dataset
was also collected at 31 Hz, which was eventually downscaled to
20 Hz to match our data set.

SmartFall dataset [26] – SmartFall had more subjects (14)
covering a wider age range of 21 to 60, covering 1027 activities
and 92,780 data points. Again, as in the case of SmartWatch and
Notch, we downsample the SmartWatch data to 20 Hz.

Fused Dataset – We also fused the data set of SmartFall,
SmartWatch and Notch, as all 3 of them use the same
accelerometer and a sampling rate of 31.25 Hz. The fusion gave
us an overall 2496 activities extended over 28 subjects aged 20-
60. We combined the data set as we wanted to understand the
effect of the size of the data set on the performance of the ML
algorithm, especially in terms of latency, as we implemented it on
the Qualcomm Snapdragon 410c SoC.

Feature Extraction – Rather than using the raw data, we
extracted certain features, primarily statistical parameters such as
maximum, minimum, mean, standard deviation, kurtosis, skew,
and variance.

We did not combine the BITS data set in the Fused data set,
as a completely different accelerometer was used to collect data.
The data ranges were completely different, and the ML
algorithms would have given incorrect results. We did not

upscale or downscale the data because no mathematical
relationship could be derived from the data sets due to using
entirely different sensors. Any min-max scale or thresholding
would have required that we examine over 100,000 data points
to look for similarities between various falls and non-falls events.
This would have required a considerable performance and
computational complexity trade-off.

A summary of all data sets is shown in the Table 2.

6. RESULTS AND DISCUSSION

To understand the working of the ML algorithm on our SoC,
we used the k-NN classifier, one of the simplest classifiers, yet
its performance competes with the most complex classifiers. The
core of this classifier depends mainly on measuring the distance
or similarity between the test and the train samples. The main
aim of k-NN is to find the nearest neighbour of the query. Hence
distance is the primary parameter in k-NN, and the method used
to calculate the distances also has a huge impact on the accuracy
of the predictions. We have used three of the distance methods,
a. Manhattan, b. Euclidean and c. Minkowski. As described in
section 5, we worked with multiple datasets; SmartWatch,
SmartFall, Notch and BITS dataset. This was to understand the
effects of data collection and the impact of the dataset size and
features on the accuracy of the ML model. Furthermore, to
understand the limitations of the dataset sizes that the SoC could
handle, we used raw and cleaned data from a SmartWatch,
SmartFall, Notch and BITS dataset, all downsampled to 20 Hz.
Feature extraction essentially involved the calculation of
statistical parameters as described in Section 5. Statistical analysis
of the data is usually done on the cloud. Since we plan to run the
ML Algorithm on the SoC itself, it is not logical to do the feature
extraction on the cloud and transmit them back to the SoC.
Hence the feature extraction happens on the SoC itself.

We ran the algorithms on varying computing architectures.
1. Apple M1 pro running at a frequency of 3.2 GHz
2. Intel i9 12th gen operating at 5.2 GHz
3. Qualcomm 410c working at 2.4 GHz.

We tried random data splits of 80-20, 70-30 and 60-40 while
testing on M1 pro and Intel i9 architectures. We also ran the ML
algorithms on both the raw dataset and the feature extracted
dataset. In this section, for better understandability, we only
present the results of the 70-30 splits of the feature-extracted
data in graphical form. The rest of the results is presented as part
of the discussion.

All graphs plotted are of k vs accuracy with a p-value
mentioned on the graph for different values of k.

Figure 8 gives the accuracy of the feature extracted notch
dataset. It can be observed from Figure 8 that the Manhattan
distance gives the best accuracy at 96.12 %, and the lowest
accuracy is that of Euclidean at 95.61 %. We ran the Minkowski
distance-based k-NN for varying values of p, and we observed

Table 2. Summary of datasets used in this paper.

Data set Activities
Data points

(Raw)

Data Points
(feature

extracted)

Test
Subjects

Age

BITS 3000 1,249,050 47,656 10 20-22

Notch 698 10,645 218 7 20-35

SmartWatch 771 34,019 367 7 21-55

Smart Fall 1027 92,780 182 14 21-60

Fused 2496 137,444 765 28 20-60

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 7

that we got the best accuracy at a p-value of 1.1. The accuracy
obtained for Minkowski was 95.91 %. This is close to the
accuracy of Manhattan since the p-value of Manhattan is 1 and
Minkowski is 1.1. The variation in accuracy between them is just
0.3 %.

When raw data was used, the accuracies for all the distance
metrics was 91.82 % but for different values of k. In the case of
Manhattan, the k-value was found to be 19, Euclidean 17 and
Minkowski 15, with a p-value of 1.5. This shows that feature
extraction gives good accuracies even with small and noisy
datasets. The best accuracies were obtained for Manhattan in the
case of Notch. Manhattan usually gives better results when the
dimensionality of the data is large, especially the impact can be
observed with small datasets. In the case of Notch, the number
of data points is 218 while the number of features extracted is
28, indicating high dimensionality [27]; shows that when the
dimensionality is high for small and noisy data, Manhattan
distance is preferred. For dimensionality of 20 or higher,
Manhattan distance provides significantly higher contrast relative
to Euclidean distance. This can also be seen in the results because
Minkowski gives an accuracy of 95.91 % at a p-value of 1.1,
making it closer to the Manhattan distance as compared to the
Euclidean distance. With the increase in data size, as we move on
to SmartWatch and SmartFall as can be observed from Figure 9
and Figure 10 respectively, the performance of Minkowski is
slightly better; with an accuracy of 97.09 % for a p-value of 1.1
for SmartFall, and 94.68 % for a p-value of 1.6 for SmartWatch.
For the Fused dataset as can be observed in Figure 11, the
accuracy for Minkowski and Manhattan are the same at 94.91 %.
Again, the p-value of Minkowski is 1.1, making it closer to
Manhattan than Euclidean.

In case of SmartWatch, Figure 10, there is a drop in accuracy
even though the number of features extracted are more than that
of Notch because the user age demographics for Notch is in the
range of 21-35, while SmartWatch has a wider range of 21-55.

Hence, the drop in accuracy as there might not be enough
volunteers across the age range. When we gathered data for the
second time, in the age range of 21-50, we used 41 users as we
were looking for equal representation across the ages. Again,
information is not available regarding the height and the weight
of the users but assuming a wide range of 21-55, it is obvious that
there would have huge variations in these parameters. Variation
in height and weight has huge impact on accelerometer data.
Hence, there have been very less training instances considering
the wide user demographics, thus causing a slight fall in the
accuracy of results.

In case of SmartFall dataset, the user age demographic is
between 21-60 but the number of users was 14 and they
performed more than 1000 activities. Hence, there was no dearth
in the training data. In case of the Fused dataset, Figure 11, the
accuracies are at 94.91 % because we combined three completely
different datasets together with varying ADL and fall activities.
The website for SmartWatch, SmartFall , and Notch does not
provide the details for these activities, so it is possible that
completely different activities were done for the three datasets.

k-NN tries to find similarities and differences to classify an
activity as Fall or ADL but considering that the activities for the
three datasets may have been completely different, it would not
have been possible to just rely on the distances to get the correct
prediction.

In case of the raw data, the accuracies are consistently lower
with extremely high k-values. For feature extracted data, k was
consistent at 3. In case of raw data, the k-value varied from 15 to
61. The increase in k-values is consistent with the increase in data
points. There is not much difference between the k-values
required for the three distances, that is Manhattan, Euclidean and
Minkowski. If Manhattan had a k-value of 59, then Euclidean
had 61, but there was a constant increase in the k-value with the
number of datapoints. In case of Notch, it was in the range of 31
to 33. In case of SmartFall, it was in the range of 43 to 45. In case

Figure 8. Accuracies of Notch Features vs k.

Figure 9. Accuracies of SmartFall Features vs k.

Figure 10. Accuracies of SmartWatch Features vs k.

Figure 11. Accuracies of Fused Features vs k.

1, 96.21%

2, 95.61%

1.1, 95.91%

95.2%

95.4%

95.6%

95.8%

96.0%

96.2%

96.4%

3 3 3

A
cc

u
ra

cy

k

Notch feature Accuracy vs k

Manhattan Euclidean Minkowski

(p, accuracy)

1, 96.73% 2, 96.73%

1.1, 97.09%

96.5%

96.6%

96.7%

96.8%

96.9%

97.0%

97.1%

97.2%

5 3 7

A
cc

u
ra

cy

k

SmartFall feature Accuracy vs k

Manhattan Euclidean Minkowski

(p, accuracy)

1, 93.78%
2 , 93.59%

1.9 , 94.68%

93.0%

93.5%

94.0%

94.5%

95.0%

3 3 3

A
cc

u
ra

cy

k

SmartWatch feature Accuracy vs k

Manhattan Euclidean Minkowski

(p, accuracy)

1 , 94.91%

2, 93.61%

1.1 , 94.91%

92.5%

93.0%

93.5%

94.0%

94.5%

95.0%

95.5%

3 3 3
A

cc
u

ra
cy

k

Fused Feature Accuracy vs k

Manhattan Euclidean Minkowski

(p, accuracy)

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 8

of SmartWatch, it was in the range of 35 to 37. In case of Fused
data, it was in the range of 59 to 61.

We had also done the 80-20 data split and 60-40 data split
though it has not been plotted here, for which the accuracies
were lesser than that of the 70-30 data split by 1.5 % in almost
all cases. In case of feature extracted dataset, the k value
continues to remain at 3, in case of the raw dataset though there

was no significant drop in accuracy, there was variation in the k
value. The k value was between 15 to 17 for notch in case of 80-
20 data split, 33 - 37 in case of 70-30 data split, and 31 – 33 in
case of 60 – 40 data split. In case of SmartWatch for the 80-20
data split the k values were between 17-19 and 35-37 for 70-30
split, and 27-29 for 60-40 data split. Again, there was no
significant variation in accuracy. In case of SmartFall for the 80-
20 data split, the values were between 27-33 and 43-45 in case of
70- 30 split and 23 - 29 for 60-40 split. In case of Fused it was
59-61 for all the data splits. Again, there was no variation in
accuracies.

The increase in k value can be attributed to the fact that there
is large amount of data in the raw format, and these are values
that are sensed continuously at an interval of 1 s/20 = 0.05 s.
Hence, values will be similar, therefore the k values which
produce good accuracies would be higher. The downside of
having high k values is that the latency increases with k.

We are more concerned with the latencies of the 410c. In case
of Notch , the latencies of the CPU, as can be observed from
Figure- 12 , they were in the range of 1 – 4 ms. In case of 410c,
it varied between 26 ms to 72 ms.

In case of 410c, as seen in Figure 13 the latency was minimum
in case of the Euclidean distance, but irrespective of the
difference the latency among the distances, it is quite high
because our actual sampling rate was 1 ms, later we down
sampled it to 50 ms to maintain uniformity between the three
datasets.

The Euclidean distance metric corresponds to the L2-norm
of a difference between vectors and vector spaces. The cosine
similarity is proportional to the dot product of two vectors and
inversely proportional to the product of their magnitudes. Hence
calculation of Euclidean distance incurs lesser latency. As the size
of the dataset increases the latency also increases as can be
observed from the graphs. In case of SmartFall it ranges between
1 ms to 3 ms in case of CPU as seen in Figure 14, and 23-54 ms
in case of the SoC as seen in Figure 15. In the case of
SmartWatch the latencies were observed in the range of 3 ms to
9 ms in case of CPU as seen in Figure 16 and between 35 to 170
ms in case of the SoC as can be observed in Figure 17. In the
case of Fused dataset the latencies were observed in the range of
6 ms to 19 ms in case of CPU as can be observed in Figure 18
and between 70 – 340 ms in case of SoC as can be seen in
Figure 19. In the Fused dataset we combined the data from
Notch, SmartFall and SmartWatch. The latencies were greater
than 70 ms, in which time 35 samples would have already been
taken from the users hence, as the dataset becomes larger, raw
data cannot be used with SoCs, even feature extracted data
cannot be used on SoCs. Hence, feature pruning or feature
selection would be required.

In the BITS data set, we have 47,656 data points covering 20
activities. The peak accuracy of the BITS data set is obtained at
k = 27 for all 3. The difference here is in the case of Manhattan;
we get a better performance of 85.4701 % compared to
Minkowski (82.906 %) and Euclidean (82.906 %). The latencies
obtained in the case of the BITS data set are slightly lesser, with
the latency being 2 ms at k = 27 for Manhattan and Minkowski,
whereas it is at 3 ms for Euclidean on the Apple M1 processor.
In the case of Euclidean and Minkowski, the peak latency is
44 ms at peak performance for Euclidean and Minkowski and
0.048 ms for Manhattan. It can also be seen that the latency
values do not increase with an increase in k. One of the reasons
we could get from the data set was that the age of the subjects
was almost the same, varying between 20-22 years, with none

Figure 12. CPU Latency of Notch Features vs k.

Figure 13. 410c Latency of Notch Features vs k.

Figure 14. CPU Latency of SmartFall Features vs k.

Figure 15. 410c Latency of SmartFall Features vs k.

1, 1 ms

2, 2 ms

1.1, 4 ms

0

1

2

3

4

5

3 3 3

La
te

n
cy

 in
 m

s

k

Notch Latency (CPU) vs k

Manhattan Euclidean Minkowski

(p, latency)

1, 36 ms
2, 26 ms

1.2, 72 ms

-10

10

30

50

70

90

3 3 3

La
te

n
cy

 in
 m

s

k

Notch Latency (410c) vs k

Manhattan Euclidean Minkowski

(p, latency)

1, 1 ms

2, 2 ms

1.1 ,3 ms

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3

La
te

n
cy

 in
 m

s

k

SmartFall Latency (CPU) vs k

Manhattan Euclidean Minkowski

(p, latency)

1, 28 ms
2, 23 ms

1.1 , 54 ms

0

10

20

30

40

50

60

70

5 3 9

La
te

n
cy

 in
 m

s

k

SmartFall feature Latency (410c) vs k

Manhattan Euclidean Minkowski

(p, latency)

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 9

having any history of illness or falls. Hence the accuracies are
lower, and latencies are lesser. As described in Section 5, besides
the accelerometer data, the BITS data set also has gyroscope data,
heart rate, and a few other parameters. When k-NN was used
with all these sensors, we obtained a peak accuracy of approx.
91 %, which is comparable with other data sets. The accuracy of
results also depends upon the accelerometer's accuracy, details of

which are provided in Section 5. Also, as all the subjects were in
the same age range, there is very little difference in acceleration
values regarding fall and non-fall values.

Figure 20 and Figure 21 give the accuracy and latency of the
BITS dataset on Apple M1 pro.

Figure 22 and Figure 23 give the accuracy and latency of BITS
dataset on Qualcomm 410c.

Looking at the varying data sets, we can draw the following
conclusions: (i) The accuracy increases with the size of training
data, (ii) The latencies are very high as the amount of data
collected is more, (iii) Statistical analysis must be performed
before running the ML algorithm on the dataset. (iv) It is
impossible to run ML algorithms on the SoC. k-NN, also
considered an algorithm that does not require much pre-training,
is one of the simplest algorithms to give accuracies above 90 %,
even with 10,000 data points requiring latencies more significant
than 8 s. Hence, compressed ML algorithms are needed on a
compressed data set. (v) When we try running the algorithm on
raw data sets without statistical analysis, 410c repeatedly kills the
process as it cannot handle large data.

7. SUMMARY AND CONCLUSIONS

Currently, Deep Learning techniques are being used for Fall
detection. DL techniques used on SmartWatch, SmartFall and
Notch datasets gave accuracies in the range of 98.2 %, 99.6 %
and 99 %, respectively, when using CNN (Convolution neural
networks) [28] on the cloud; some papers [29] implement RNN
on STM-32 and DL algorithms only take 1 s for execution.
However, the pre-trained and the dataset size used had only 22
thousand points. Some data were alert or pre-fall alert, and the
rest was fall. The model was pre-trained to detect pre-falls and
falls and gave an accuracy of 75 %. When we tried to reproduce
the results by running ML algorithms on STM-32 with the BITS
dataset, which had around 3,000 activities and 47,656 data points,
we got an accuracy of 77 %. Neither 75 % nor 77 % are good
accuracies, especially considering the prediction is for safety-
critical Geriatrics applications.

Hence, we have opted to use high-performance advanced
architecture SoCs. Though SoCs provide accuracies equivalent
to advanced processors such as Intel i9 and Apple M1 pro, we
could not run the training and testing for more than ten epochs.
In the case of the Fused dataset for ten epochs, the SoC took
approximately 4 hr to complete. These were just accelerometer
data and one of the simpler algorithms, which was k-NN. We

Figure 16. CPU Latency of SmartWatch Features vs k.

Figure 17. 410c Latency of SmartWatch Features vs k.

Figure 18. CPU Latency of Fused Features vs k.

Figure 19. 410c Latency of Fused Features vs k.

Figure 20. Accuracy vs k BITS data M1 pro.

Figure 21. Latency vs k BITS data M1pro.

1, 3 ms
2, 2 ms

1.9 , 9 ms

0

2

4

6

8

10

12

1 2 3

La
te

n
cy

 in
 m

s

k

SmartWatch feature Latency (CPU) vs k

Manhattan Euclidean Minkowski

(p, latency)

1, 50 ms
2, 35 ms

1.6 , 170 ms

0

50

100

150

200

3 7 3

La
te

n
cy

 in
 m

s

k

SmartWatch feature Latency (410c) vs k

Manhattan Euclidean Minkowski

(p, latency)

1, 6 ms 2 , 5 ms

1.1 , 19 ms

0

5

10

15

20

25

3 3 3

La
te

n
cy

 in
 m

s

k

Fused feature Latency (CPU) vs k

Manhattan Euclidean Minkowski

(p, latency)

1, 80 ms 2, 70 ms

1.1 , 340 ms

0
50

100
150
200
250
300
350
400

3 1 3

La
te

n
cy

 in
 m

s

k

Fused feature Latency (410c) vs k

Manhattan Euclidean Minkowski

(p, latency)

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 10

obtained an accuracy of around 91 %. Our results also indicate
that accuracy increases with the data size; from the results, we
can also conclude that when features are extracted, the
performance improves. We need to run both the feature
extraction and the ML algorithm on the SoC. The results we have
shown only include the data loading and testing time but not the
time taken for feature extraction. The time for feature extraction
may be high depending on the number of features that must be
extracted, and the sensors used. When multiple sensors are used,
the amount of data increases. In our research, we intend to use
data from the 3-axis accelerometer, Gyroscope, and
magnetometer, as well as data from heart rate sensors, SpO2 and
galvanic skin sensor, which would mean that the number of
dimensions would be 94. Hence, the time taken for the algorithm
to perform feature extraction and predict the outcome will be
extremely high. Therefore, it becomes necessary that if we need
to use an SoC-based system, the features need to be pruned as
well as the Ensemble ML algorithm must be compressed. When
we tried running Ensemble techniques on data gathered from 41
users, we got an accuracy of over 96 %. However, the size of the
dataset and features extracted were very large, and the latencies
incurred for feature extraction were several minutes. In our
future work, we propose to prune the extracted features and use
compressed Ensemble techniques that can run on the SoCs with
minimum features.

REFERENCES

[1] United Nations, World Population Ageing: 1950-2050. Online
[Accessed 12 September 2023]
http://globalag.igc.org/ruralaging/world/ageingo.htm

[2] M. E. Tinetti, Clinical practice: preventing falls in elderly persons,
The New England Journal of Medicine, 348 (1) (2003), pp. 42-49.
DOI: 10.1056/nejmcp020719

[3] J. M. Hausdorff, D. A. Rios, H. K. Edelberg, Gait variability and
fall risk in community-living older adults: a 1-year prospective
study, Archives of Physical Medicine and Rehabilitation, 82 (8)
(2001), pp. 1050-1056.
DOI: 10.1053/apmr.2001.24893

[4] N. Thakur, C. Y. Han, A Study of Fall Detection in Assisted
Living: Identifying and Improving the Optimal Machine Learning

Method. J. Sens. Actuator Netw. 2021, 10, 39.
DOI: 10.3390/jsan10030039

[5] Apple Inc., Apple watch user guide. Online [Accessed 12
September 2023]
https://support.apple.com/it-it/guide/watch/welcome/watchos

[6] UnaliWear Inc., Unali Kanega watch user guide. Online [Accessed
12 September 2023]
https://unaliwear.com

[7] FallCall Solutions, LLC., Fall call lite application documentation.
Online [Accessed 12 September 2023]
https://www.fallcall.com/apps/FallCall-Lite

[8] D. Naranjo-Hernández, A. Talaminos-Barroso, J. Reina-Tosina, L.
M. Roa, G. Barbarov-Rostan, P. Cejudo-Ramos, E. Márquez-
Martín, F. Ortega-Ruiz, Smart Vest for Respiratory Rate
Monitoring of COPD Patients Based on Non-Contact Capacitive
Sensing, Sensors (Basel). 2018;18(7):2144. Published 2018 Jul 3.
DOI: 10.3390/s18072144

[9] J. Calvillo-Arbizu, D. Naranjo-Hernández, G. Barbarov-Rostán,
A. Talaminos-Barroso, L. M. Roa-Romero, J. Reina-Tosina, A
Sensor-Based mHealth Platform for Remote Monitoring and
Intervention of Frailty Patients at Home, Int J Environ Res Public
Health. 2021;18(21):11730. Published 2021 Nov 8.
DOI: 10.3390/ijerph182111730

[10] Anita Ramachandran, Anupama Karuppiah, A Survey on Recent
Advances in Wearable Fall Detection Systems, BioMed Research
Int., vol. 2020, Article ID 2167160, 17 pages, 2020.
DOI: 10.1155/2020/2167160

[11] E. Alpaydin, Voting over Multiple Condensed Nearest Neighbors.
Artificial Intelligence Review, 11, 1997, pp. 115–132.
DOI: 10.1023/A:1006563312922

[12] K. Vembandasamy, R. Sasipriya, E. Deepa, Heart Diseases
Detection Using Naive Bayes Algorithm, IJISET - International
Journal of Innovative Science, Engineering & Technology, vol. 2
issue 9, September 2015. ISSN 2348 – 7968. Online [Accessed 12
September 2023]
https://ijiset.com/vol2/v2s9/IJISET_V2_I9_54.pdf

[13] D. W. Hosmer, S. L. Lemeshow, Applied Logistic Regression. 2nd
ed. Hoboken, NJ: Wiley-Interscience, 2000.

[14] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone,
Classification and Regression Trees (1st ed.), 1984, Routledge.
DOI: 10.1201/9781315139470

[15] Liu SH, Cheng WC. Fall detection with the support vector
machine during scripted and continuous unscripted activities.
Sensors (Basel). 2012;12(9):12301-16.
DOI: 10.3390/s120912301

[16] Young-Hoon Nho, Jong Gwan Lim, Dong-Soo Kwon, Cluster-
Analysis-Based User-Adaptive Fall Detection Using Fusion of
Heart Rate Sensor and Accelerometer in a Wearable Device. IEEE
Access, vol. 8, 2020, pp. 40389-40401.
DOI: 10.1109/ACCESS.2020.2969453

[17] Kirstine Rosenbeck Gøeg, Ronald Cornet, Stig Kjær Andersen,
Clustering clinical models from local electronic health records
based on semantic similarity, Journal of Biomedical Informatics,
Volume 54, 2015, Pages 294-304, ISSN 1532-0464.
DOI: 10.1016/j.jbi.2014.12.015

[18] B. J. Yoon, Hidden Markov Models and their Applications in
Biological Sequence Analysis. Current Genomics. 2009 Sep;10(6),
pp. 402-415.
DOI: 10.2174/138920209789177575

[19] G. Wang, Z. Liu, Q. Li, Fall Detection with Neural Networks,
2019 IEEE Int. Flexible Electronics Technology Conf. (IFETC),
2019, pp. 1-7.
DOI: 10.1109/IFETC46817.2019.9073718

[20] W. Xing, Y. Bei, Medical Health Big Data Classification Based on
k-NN Classification Algorithm, in IEEE Access, vol. 8, 2020, pp.
28808-28819.
DOI: 10.1109/ACCESS.2019.2955754

[21] Andrea Proietti, Massimo Panella, Fabio Leccese, Emiliano Svezia,
Dust detection and analysis in museum environment based on

Figure 22. Accuracy vs k BITS data 410c.

Figure 23. Latency vs k BITS data 410c.

http://globalag.igc.org/ruralaging/world/ageingo.htm
https://doi.org/10.1056/nejmcp020719
https://doi.org/10.1053/apmr.2001.24893
https://doi.org/10.3390/jsan10030039
https://support.apple.com/it-it/guide/watch/welcome/watchos
https://unaliwear.com/
https://www.fallcall.com/apps/FallCall-Lite
https://doi.org/10.3390/s18072144
https://doi.org/10.3390/ijerph182111730
https://doi.org/10.1155/2020/2167160
https://doi.org/10.1023/A:1006563312922
https://ijiset.com/vol2/v2s9/IJISET_V2_I9_54.pdf
https://doi.org/10.1201/9781315139470
https://doi.org/10.3390/s120912301
https://doi.org/10.1109/ACCESS.2020.2969453
https://doi.org/10.1016/j.jbi.2014.12.015
https://doi.org/10.2174/138920209789177575
https://doi.org/10.1109/IFETC46817.2019.9073718
https://doi.org/10.1109/ACCESS.2019.2955754

ACTA IMEKO | www.imeko.org September 2023 | Volume 12 | Number 3 | 11

pattern recognition, Measurement, vol. 66, 2015, pp. 62-72
DOI: 10.1016/j.measurement.2015.01.019

[22] Rizwan Shahid, Stefania Bertazzon, Merril Knudtson, William
Ghali, Comparison of distance measures in spatial analytical
modeling for health service planning. BMC health services
research. 9, 2009, 200.
DOI: 10.1186/1472-6963-9-200.

[23] D. Kraft, K. Srinivasan, G. Bieber, Deep Learning Based Fall
Detection Algorithms for Embedded Systems, SmartWatches and
IoT Devices Using Accelerometers. Technologies 2020, 8, 72.
DOI: 10.3390/technologies8040072

[24] SmartWatch dataset. Online [Accessed 12 September 2023]
https://userweb.cs.txstate.edu/~hn12/data/SmartFall Data Set /
SmartWatch/

[25] Notch dataset. Online [Accessed 12 September 2023]
https://userweb.cs.txstate.edu/~hn12/data/SmartFallDataSet/
Notch/Notch_Dataset_Wrist/

[26] SmartFall dataset. Online [Accessed 12 September 2023]
https://userweb.cs.txstate.edu/~hn12/data/SmartFall DataSet
/SmartFall/

[27] C. C. Aggarwal, A. Hinneburg, D. A. Keim, On the Surprising
Behavior of Distance Metrics in High Dimensional Space. In: Van
den Bussche, J., Vianu, V. (eds) Database Theory — ICDT 2001.
ICDT 2001. Lecture Notes in Computer Science, vol 1973.
Springer, Berlin, Heidelberg.
DOI: 10.1007/3-540-44503-X_27

[28] G. L. Santos, P. T. Endo, K. H. d. C. Monteiro, E. d. S. Rocha, I.
Silva, T. Lynn, Accelerometer-Based Human Fall Detection Using
Convolutional Neural Networks. Sensors 2019, 19, 1644.
DOI: 10.3390/s19071644

[29] Mohammed Farsi, Application of ensemble RNN deep neural
network to the fall detection through IoT environment,
Alexandria Engineering Journal, vol. 60, Issue 1, 2021, pp. 199-
211.
DOI: 10.1016/j.aej.2020.06.056

https://doi.org/10.1016/j.measurement.2015.01.019
https://doi.org/10.1186/1472-6963-9-200
https://doi.org/10.3390/technologies8040072
https://userweb.cs.txstate.edu/~hn12/data/SmartFall%20Data%20Set%20/
https://userweb.cs.txstate.edu/~hn12/data/SmartFallDataSet/Notch/Notch_Dataset_Wrist/
https://userweb.cs.txstate.edu/~hn12/data/SmartFallDataSet/Notch/Notch_Dataset_Wrist/
https://userweb.cs.txstate.edu/~hn12/data/SmartFall%20DataSet%20/SmartFall/
https://userweb.cs.txstate.edu/~hn12/data/SmartFall%20DataSet%20/SmartFall/
https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.3390/s19071644
https://doi.org/10.1016/j.aej.2020.06.056

