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1. INTRODUCTION 

Medical and healthcare advancements have increased the 
average human lifespan to over 80. Geriatric healthcare hence 
has become vital, and regular monitoring of parameters is 
required. Currently, visiting, or in-house nursing staff monitor 
various parameters; such an arrangement is expensive for a 
significant part of Indian society. The past decade has witnessed 
substantial advances in IoT (Internet of Things)-based wearable-
based health devices and their integration with machine learning 
and deep learning; remote diagnosis, prognosis, and treatment 
can be performed using IoT-based medical-grade devices. Hence 
advances in IoT, embedded systems and ML (Machine Learning) 
are the catalysts in developing geriatric healthcare systems. Such 
systems are available at a reduced cost for detecting anomalies 
and raising timely alerts, assistance and care when required. Such 
a system is essential in a country like India, with a rising 
population of seniors residing in isolation. Some common 
concerns of the geriatric population include falls, sleep apnea, 
hiatus hernia, and other respiratory disorders that do not have a 

surgical solution, and the primary cause is frailty. Medical 
literature [1] also indicates that these disorders generally 
compound into life-threatening disorders. 

Sensors monitor multiple health conditions and relay data to 
an intelligent ML-based system that can detect and predict the 
condition. In this paper, we concentrate on geriatric fall 
detections. The causes of the falls can be internal or external. 
External causes of falls are due to environmental factors like 
slippery surfaces. Internal causes include cramps, weakness in the 
muscular-skeletal structure, vision impairments, chronic 
disorders, and other ailments. The duration of the fall is also 
essential. According to [2], about 40 % of the individuals who 
fall cannot get up on their own, and about 50 % who experience 
a long fall are likely to die within the next few months. A long-
duration fall can also result in localized muscle injury, tissue 
damage, nerve issues, dehydration, hypothermia, pneumonia, 
and a fear of further falls. These conditions affect the overall 
health of the geriatric population. Although numerous studies [3] 
related to fall detection have been out recently, several challenges 
still exist. These include 
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Fall of an elderly person often leads to serious injuries and death. Many falls occur in the home environment, and hence a reliable fall 
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exist, it has been run on a cloud. No analysis of the models, convergence, and dataset analysis on Systems on a Chip (SoCs) has ever 
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1. The lack of a comprehensive analysis of ML techniques 
deployed to detect falls, 

2. A high number of false positives, 
3. The systems that detect and correct such false positives 

have low accuracy, 
4. The inability of the system to detect the duration of the 

fall. 
With technological advances in SoCs (System on Chip) and 

IoT systems, wearable devices have emerged as a leading area of 
research in geriatric health care; the amount of data collected at 
homes/hospitals for the elderly is large and complex and making 
accurate decisions based on multiple parameters is the primary 
requirement for such safety-critical systems. SoCs are resource-
constrained devices in terms of memory, processing power or 
energy constraints. Hence, they cannot implement ML 
algorithms or Deep Neural Networks. Hence a possible solution 
for this is the use of model compression. This paper selects one 
of the simplest ML algorithms. This algorithm is validated using 
varying datasets of different sizes. We have done this to prove 
that running even a simple ML algorithm such as k-NN (Kth 
Nearest Neighbour) is impossible when the data set size is 
considerable. Not only is the latency high but as the size of the 
dataset increases, the SoC fails, indicating the non-availability of 
the required resources. This paper proves that ML algorithms 
give inaccurate, non-reliable and high latency results when run 
on a raw data set. Hence this paper builds a case for using model 
compression algorithms while using SoCs. 

The organization of the rest of the paper is as follows: Section 
2 talks about various IoT architectures employed in fall 
detection, Section 3 gives a brief overview of ML algorithms used 
for fall detection, Section 4 provides the operational details of k-
NN, Section 5 gives the details of the dataset used for analysis, 
we present our results in Section 6, and Section 7 summarises 
and concludes this paper. 

2. ARCHITECTURAL MODELS FOR IOT BASED FALL 
DETECTION SYSTEMS WITH WEARABLE END DEVICE 

With the growth of SoCs and their integration with IoT 
systems, wearable healthcare devices are now a focused research 
area. This section presents four possible IoT architectural models 
for healthcare applications. The variation in the models is in data 
gathering, processing and the conversion of data to knowledge. 

1. Model A – In this architectural model, the data is 

collected at regular sampling intervals from the sensors 

of the wearable devices, which forwards the data to the 

coordinator. The coordinator then collects the data 

from multiple wearables and transfers the data to the 

cloud. The data analytics using ML/DL (Deep 

Learning) algorithms is performed on the cloud. The 

end devices have constrained processing and memory 

capabilities in such an architecture. The coordinator 

only acts as a data forwarder. Figure 1 gives the 

schematic diagram of Model A. The research focus of 

this architecture is usually on developing networking 

protocols that can transmit the data to the cloud with 

minimum loss and latency with low control overheads. 

2. Model B – In this architectural model, the wearable end 

device collects the raw data and transmits it to the 

coordinator. The coordinator not only forwards the 

data to the cloud but performs sensor fusion prior to 

forwarding the data. The cloud then uses the fused data 

to extract the required features and converts the data to 

health decisions using ML/DL algorithms. Figure 2 

gives the schematic diagram of Model B.  In this model, 

the coordinator architecture is as important as the 

network protocols; preferably, SoCs are used as 

coordinators. 
3. Model C – In the case of architectural model C, powerful 

end devices collect data from multiple sensors, run 
sensor fusion algorithms then forward the data to the 
coordinator. The coordinator then runs ML/DL 
algorithms for data analytics on the fused data. The data 
analytics performed on the coordinator are for short-
term health monitoring. In contrast, the analytics run 
on the cloud to which the co-ordinator forwards the 
data are for long-term health monitoring. The end 
devices are powerful enough to run sensor fusion 
algorithms. Figure 3 gives the schematic diagram of 

 

Figure 1. IoT architectural Model A.  

 

Figure 2. IoT architectural Model B. 

 

Figure 3. IoT architectural Model C. 

 

Figure 4. IoT architectural Model D. 
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Model C. The server-class coordinators still run the 
ML/DL algorithms. Hence, latencies will still be 
involved in making short-term health decisions due to 
the latency in transmitting data between the end device 
and the coordinator. 

4. Model D – Figure 4 gives the schematic diagram of 
Model D. In the case of architectural model D, the 
wearable device is built using a powerful SoC as it 
collects data from multiple sensors, fuses it, and runs 
ML and DL algorithms to detect/predict falls. The 
wearable device, in this case, requires considerable 
processing power; the wearable device is required to 
collect and clean the data, perform sensor fusion, 
extract the required features, and then convert the data 
into information using a complex ML/DL algorithm. 

Though SoCs have considerably advanced to handle complex 
biomedical applications, they are still constrained in the amount 
of memory available, energy consumed and form factor. As the 
device is wearable, the form factor must be significantly less. At 
the same time, power consumption must also be limited. Heat 
dissipation is another issue that is common in wearable devices. 
Running complex processing algorithms will cause the processor 
to expend more heat. Hence, running ML, DL, or Deep Neural 
Networks widely used in IoT-based health services is difficult. 
Over the last couple of years, research in model compression of 
ML and DL algorithms has gained traction. The goal of model 
compression is to achieve a simplified model compared to the 
original with the same level of accuracy as the original algorithms. 
The advantage of running a reduced model is that fewer or 
smaller parameters need to be stored in the memory, as not only 
is the data resident in memory, but the operating system and the 
code are also resident in the memory. The processing latency is 
also expected to be reduced, allowing the model to predict in a 
shorter duration. In model D, the coordinator again acts as a 
forwarder of information, and the cloud runs long-term health 
monitoring and rehabilitation algorithms. The advantage of 
having the SoCs run the compressed algorithms is that alarms 
can be raised in case of falls, even when no network connection 
is available. Bad connectivity reduces the lie-in period after the 
fall, reducing complex health situations that might arise due to 
long lie-in periods. 

2.1. Model D and available wearable devices in the market 

IoT applications are classified into different levels based on 
the complexity of the application and the complexity of the 
elements used to build them. In the case of the models A, B and 
C described in this section, data storage and analytics is not done 
on the wearable device. Health monitoring systems usually 
collect a large amount of data from multiple sensors. The size of 
the data is large and requires complex data analytics. Hence using 
the usual classification of IoT systems, the data storage and 
analytics must be primarily performed on the cloud. While this 
model works well for long-term health monitoring and 
rehabilitation, it is unsuitable for emergency services. In our 
suggested model D, we store some of the data and run the 
complex data analytics on them to handle an emergency such as 
falls; hence each end device has a very powerful SoC at its core. 
We plan to use SoCs such as Qualcomm Snapdragon 
410c/820c/wear 4100 series built explicitly for biomedical 
applications. Running ML /DL applications especially requires 
high processing power. Hence if the analytics for emergency care 
must be performed on wearable devices, we need to use 
compressed ML algorithms. 

We have reviewed multiple fall detection-based systems [4] 
available commercially and under theoretical research. In the 
following subsection, we briefly overview such fall detection 
systems. 

2.2. Commercially available systems and their applications 

Apple Watch SE or series 4 [5] and above can detect hard 
falls. For people above 55 years of age, these services are enabled 
automatically. The "Apple Watch fall detection app" can help 
connect users to emergency services while sending messages to 
their emergency contacts. Apple Watch can detect only hard falls. 
It uses accelerometer and gyroscope data to detect a fall. It uses 
impact acceleration and the resultant wrist trajectory for fall 
detection. To detect falls, it uses thresholding technology on the 
data, and no ML/DL algorithms are run on the wearable system. 
Apple Watch also detects if a person is immobile for 60 seconds; 
it then begins a 30 second counter that starts an audio alert. The 
audio alert keeps getting louder until emergency services press 
"cancel". Despite the availability of such features, experimental 
data show the accuracy is only 4.7 per cent; it has a false-negative 
rate of 95.3 per cent, and an interesting point is also that Apple 
watches are better at detecting forward falls than sideways falls 
because the wrist movement in sideways fall is equivalent to lying 
down in bed. 

Another smart wearable device available is the "Unali 
Kanega" watch [6], another wrist-based device for fall detection. 
It also makes use of accelerometer data to detect falls. The Unali 
watch is unique because the user can charge the battery while still 
wearing the watch. This feature is helpful since falls may occur 
when the user removes his watch to charge. 
There is also the Phoenix watch available which has an app called 
WellB Medical Alert Plus that sends out the GPS location of the 
fallen person when he presses the button. 

Other than the wearable systems available commercially, there 
are also applications which can run on the mobile. The summary 
of the applications and their capability is listed in the table given 
below. All the applications require that a user either presses a 
button or uses some form of an audio alert. The application will 
only provide the GPS location of the person. (Wherever GPS+ 
is mentioned in the table, it also uses Wi-Fi information to detect 
the person's position).  

There is also the popular "fall call lite application" [7], which 
usually runs on the Watch Operating Systems. Here the user 
must press a button and call for help when he falls. These 
applications are rare as they require that the person be still 
conscious and can raise an alert. 

2.3. The wearable devices under research 

[8] talks about a smart vest that can monitor respiratory and 
physical activities. The M-health platform [9] described as part of 
the "Frail" project has a smart vest, fall sensors, and a 
SmartWatch. 

The sensing platform aims to address the continuous 
monitoring of vital signs relevant to frail users and detecting and 
alerting falls. The smartWatch worn by the user acts as the 
gateway to the platform, gathering data from sensors and 
receiving events and reminders introduced by caregivers. Since 
the SmartWatch is responsible for communication with the frail 
servers, the end devices and the sensing platforms only need to 
send the sensor data. 

Hence, this falls under model C of the IoT architecture 
described in section 2. Table 1 gives a summary of a few 
commercially available wearable devices which are used for Fall 
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Detection. For fall detection, mainly accelerometer-based 
devices are used. Also, after the accelerometer detects the fall, 
the SmartWatch expects the wearer to confirm that he/she has 
fallen. If the user confirms the fall, SmartWatch returns the event 
to the frail servers and triggers a preconfigured procedure. 

The sensor module used is a tri-axial accelerometer, and the 
processing module is a PIC 18F2431 Microcontroller which uses 
a thresholding method to detect falls. The sensors are placed as 
an adhesive patch on the skin of the lower back. Again, this 
system does not use multiple sensor data or machine learning 
algorithms to detect falls. Further research shows that most fall 
detection systems use Model A, while the rest may use Model B, 
where sensor fusion is done on the coordinating device. The 
research that we are doing will be the first attempt to build a 
wearable SoC device that runs compressed ML/DL algorithms 
that provide auto alerts for emergency help. 

3. MACHINE LEARNING 

ML [10] is a technique that applies mathematical models to 
data sets to analyse, classify and convert data into knowledge. 
There are three types of ML algorithms. 

Supervised Learning:  In supervised learning, the input data is 
classified a priori using a training data set; any new data is 
automatically classified into one of the input types, some of the 
algorithms include k-NN [11], Naïve Bayes [12], Decision trees 
[13], Linear Regression [14], Support Vector Machine (SVM) 
[15]. 

Unsupervised: In unsupervised learning, the ML algorithm 
recognizes a pattern on its own from a given data set; some of 
the standard algorithms include K-Means clustering [16], 
Classification rules [17], Hidden Markov model [18], Neural 
Networks [19]. 

Reinforced: This algorithm allows the system to adapt its 
behaviour based on feedback from the environment. 

In the case of fall detection, binary classification is used to 
classify an activity into a fall or Activities of Daily Living (ADL). 
The diagram given below shows how the ML model is built. The 
data is collected and cleaned for incorrect sensor readings, and 
the statistical features are extracted before training. 

In each category of ML, there are several algorithms, as shown 
in Figure 5. 

For fall detection, several ML algorithms are currently being 
used. Commonly used algorithms are Logical Regression, Naïve 
Bayes, SVM, k Nearest Neighbour and Random Forest. Among 
these algorithms, this paper concentrates on the k-NN algorithm. 
We had earlier run multiple ML algorithms for fall detection. The 
AUC (Area Under Curve)/ROC (Receiver Operating 
Characteristic) curve for them is shown in the Figure 6. 

The algorithms were run on the data set that we had collected. 
The dataset had over 70k points, of which 70 % was used for 
training and 30 % was used as test data. k-NN has a good AUC 
score of 0.971, performing as well as SVM. We have used k-NN 
to analyse the latencies involved in an ML algorithm as the 
accuracies of k-NN are good, and k-NN does not require any 
pre-training until a query is raised. Hence, k-NN is the best 
model to understand the effect of implementing ML on SoCs, as 
no heavy pre-training is required, unlike the other algorithms. 
While Naïve-Bayes is easier to implement, its AUC score is only 
0.825, which is very low compared to k-NN. 

4. K-NEAREST NEIGHBOR CLASSIFICATION ALGORITHM 

The problem presented in this paper consists of an ML 
algorithm that classifies features extracted into fall and non-fall. 
We wanted to use a classification technique with good accuracy 
and minimum complexity as we plan to implement the ML 
algorithm on the End device. In this paper, we have used k-NN 
[20]. The k-NN algorithm does not require a choice of a specific 
classification model or feature selection; it only requires a suitable 
metric to evaluate the distance between features. The k-NN 
algorithm depends upon a key parameter[21], a priori fixed k; the 
value of k is a critical parameter for the algorithm as it is the 

Table 1. The summary of commercially available wearables. 

Product 
Automatic 

fall detection 
Location 

capability 
Battery life 

GreatCall Lively Mobile Plus Yes GPS 1-3 days 

Philips Lifeline GoSafe 2 Yes GPS+ 2-3 days 

Medical Guardian Active 
Guardian 
(rebranded version of the 
Freeus Belle+) 

Yes GPS+ up to 5 days 

LifeFone At home, On-the-
Go GPS, Voice in Pendant 
(rebranded version of 
the Freeus Belle+) 

Yes GPS+ 
up to 5 days 

(30 days if no fall 
detection capability) 

LifeFone At home, On-the-
Go GPS (rebranded version 
of the MobileHelp Duo) 

Yes GPS 
1 day (mobile base 

station),  
pendant: long 

MobileHelp Duo Yes GPS 
1 day (mobile base 

station), 
pendant: 18 months 

Medical GuardianMini 
Guardian 

Yes GPS+ up to 5 days 

 

Figure 5. Schematic of ML Model. 

 

Figure 6. AUC/ROC for Fall detection. 
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primary source of variation in accuracy. A further parameter of 
the algorithm is the selection of the distance metric between the 
points such as Euclidean, Manhattan, Minkowski, and Hamming. 
The k-NN schematic diagram used for classification for a k value 
of 3 is shown in Figure 7. 

Three distance metrics used in this paper are  
1. Euclidean 
2. Manhattan 
3. Minkowski [21]. 

The Euclidean distance is calculated using the formula given 
below  

𝑑 = √(𝑥2 − 𝑥1)2  +    (𝑦2 − 𝑦1)2 . (1) 

The Manhattan distance is the distance between two points 
measured along the axis at right angles and uses the following 
formulae for calculating the distance  

𝑑 = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| . (2) 

The Minkowski distance comes somewhere between 
Manhattan and Euclidean. The Minkowski distance is given by  

𝑑 = {|𝑥2 − 𝑥1|𝑝 + |𝑦2 − 𝑦1|𝑝)1/𝑝 . (3) 

The Hamming distance is a special case of Minkowski 
distance, the Hamming distance between two strings of equal 
length results as the number of positions at which the 
corresponding symbols (0/1) are different. 

The Hamming distance equation is given by  

𝑑 =  ∑|𝐴𝑖 − 𝐵𝑖| . (4) 

The effect of the parameter p on the behaviour of the k-NN 
algorithm while using Minkowski distance was also analysed. 
According to previous research [22], distance plays a pivotal role 
in studying disease patterns. We tried varying values of p, starting 
from 0.5 to 12, and we found that the maximum accuracy was in 
the range of 1.2 to 1.5. So, we ran the k-NN algorithm using the 
Minkowski distance estimator to find the ideal combination of p 
and k values. The detailed description is described in the results 
section. 

5. DATASET AND DATA PREPERATION 

The size of the data set, the data collection methodology used, 
the nature of the sensors, and the sampling rate affect the model's 
output. Research in fall detection has advanced over the last few 
years due to the increase in the elderly population who live alone. 
Multiple fall data sets are available, and various data sets [23] have 

been analyzed in detail. When coming to falls, the sensors used 
for fall detection can be (a) Biological, (b) IMU, (c) Image (d) 
Ambient sensors—the first two fall under the wearable sensor 
category. The latter are non-wearable. Biological sensors might 
be heart rate sensors, GSR sensors, SpO2 sensors or sensors 
based on the previous health history of the person. IMU sensors 
include a 3D accelerometer and gyroscope. Image sensors are 
monochrome/RGB/Thermal cameras/IR cameras, which 
detect falls. Ambient sensors are usually placed around the entire 
room occupied by the elderly. This system includes radar and 
acoustic sensors, which are used for detecting falls. 

Wearable sensors are preferred because they can follow the 
elderly through their daily routine. Multiple wearable sensors, 
primarily IMU-based sensors, are available, most of which use 
3D accelerometers. 80 % of the data set available currently have 
waist-worn accelerometer sensors. Some supplement the waist-
worn sensors by placing the sensors on the thigh or leg of the 
sensor. Few data sets place sensors all over the torso. Wearing 
sensors on the waist and the torso can be highly uncomfortable 
for the elderly as these sensors have to be worn for the entire 
day. This paper focuses on wrist-worn sensors as we strongly 
believe a wrist sensor is more convenient for an elderly user. The 
sensor data can constantly be augmented appropriately using 
mathematical models. 

Furthermore, multiple fitness bands in the market provide 

IMU and heart rate, blood pressure, and oxygen levels, and these 

devices can very quickly be adapted for fall detection. Fitness 

bands come with their SoCs, so we believe we can adapt ML 

algorithms to be run locally on the device and the data to be 

stored locally for short-term health emergencies such as falls. We 

examined multiple datasets which used 3D accelerometers and 

looked mainly at data sets where the sensors were worn on the 

wrist. SmartWatch, SmartFall and Notch datasets are available 

publicly, so we used them. We also collected data using ten 

volunteers wearing a TicWatch (BITS dataset). 

Data collection methodology for BITS dataset  
We gathered our data using ten volunteers wearing a 

TicWatch, including a 3-axis accelerometer, 3-axis 
magnetometer, 3-axis gyroscope, and optical heart rate sensor. 

Experiments were performed in a controlled environment in 
20 different ADL/fall activity simulations, such as walking, 
running, climbing stairs, abrupt movements, and various types of 
falls. Using a TicWatch, data was collected at four 
samples/second, the maximum possible frequency. 
The volunteers were aged between the ages of 20 -22 years. Their 
height ranged from 5 ft 1 in to 5 ft 8 in, and their weight was 
from 40 kg to 75 kg. 

Experiments were performed across 20 different ADL/fall 
activity simulations, such as walking, running, climbing stairs, 
and abrupt movements. The volunteers simulated the following 
activities: (a) Walking slowly, (b) Walking quickly, (c) Jogging, (d) 
Climbing up and down a flight of stairs, (e) Slowly sitting on a 
chair, waiting a moment, and standing up slowly (f) Quickly 
sitting on a chair, waiting a moment, and standing up quickly (g) 
Trying to transition from sitting to standing position but 
collapsing midway (h) Transitioning from sitting to lying and 
back, slowly (i) Transitioning from sitting to lying and back, 
quickly (j) Transitioning from sideways position to one's back 
while lying down (k) Standing, about to sit down, and getting up 
(l) Stumbling while walking (m) Slowly jumping without falling 
(n) Swinging hand (o) Falls – forward, backwards, left lateral, 
right lateral (p) Grabbing while falling (q) Spinning fall.  

 

Figure 7. Classification Schematic of k-NN algorithm (k = 3). 
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To collect the data the TIC watch was programmed to collect the 
data and send it via the user interface to the system. The data was 
automatically moved into a .csv file. The software's user interface 
had buttons for every type of activity performed, so the 
corresponding button was selected before performing a 
particular activity. The button enabled automatic labelling of the 
dataset as it got stored.  

IMU and heart rate samples were collected during 14 ADLs 
and 6 falls, with each activity/fall repeated twice. All activities 
were conducted at the BITS Pilani, K K Birla Goa campus. The 
falls were simulated in a controlled environment. The anechoic 
chamber at BITS Pilani, K K Birla Goa campus, was used for 
this purpose. The chamber, 4.5 m × 2.2 m × 2.5 m, is padded 
with NRL USA standard 8093 complying material on all four 
walls, the floor, and the ceiling. This padding provided the 
necessary shock absorption capabilities to protect volunteers 
from any harm during the experimentation.  

The volunteer's rebound and residual movements after a fall 
activity were also considered to ensure that the data set contains 
post-fall IMU and heart rate parameters. Hence for falls, the data 
collection was stopped not immediately but a few seconds after 
the actual event occurred. During that time, the volunteers 
performed post-fall movements such as rolling over and 
attempting to get up. The data set generated had, in total, over 
110,000 lines about the ADLs as mentioned above and falls. 

In the case of the BITS data set though we collected data 
using 3-axis accelerometer, magnetometer, and gyroscope as well 
as an optical heart rate sensor, we used only the data from the 3-
axis accelerometer to study the accuracies over the other data 
sets. Since we filtered out the other sensor and only used a 3-axis 
accelerometer, the data points were reduced from 110,000 to 
47,656. 

Data preparation for SmartFall, SmartWatch and Notch 
SmartWatch dataset [24] – SmartWatch had 7 subjects aged 

21 to 55 who performed 971 different activities. Each datapoint 
was collected at a sample rate of 31 Hz. To match it with our 
data set, we downscaled it to 20 kHz using the Python SciPy 1.2.3 
package; overall, there were 34,019 data points. 

Notch dataset [25] – The Notch data set has only 7 subjects 
aged 20-35. Overall, Notch had 10,645 data points; the dataset 
was also collected at 31 Hz, which was eventually downscaled to 
20 Hz to match our data set. 

SmartFall dataset [26] – SmartFall had more subjects (14) 
covering a wider age range of 21 to 60, covering 1027 activities 
and 92,780 data points. Again, as in the case of SmartWatch and 
Notch, we downsample the SmartWatch data to 20 Hz. 

Fused Dataset – We also fused the data set of SmartFall, 
SmartWatch and Notch, as all 3 of them use the same 
accelerometer and a sampling rate of 31.25 Hz. The fusion gave 
us an overall 2496 activities extended over 28 subjects aged 20-
60. We combined the data set as we wanted to understand the 
effect of the size of the data set on the performance of the ML 
algorithm, especially in terms of latency, as we implemented it on 
the Qualcomm Snapdragon 410c SoC. 

Feature Extraction – Rather than using the raw data, we 
extracted certain features, primarily statistical parameters such as 
maximum, minimum, mean, standard deviation, kurtosis, skew, 
and variance. 

We did not combine the BITS data set in the Fused data set, 
as a completely different accelerometer was used to collect data. 
The data ranges were completely different, and the ML 
algorithms would have given incorrect results. We did not 

upscale or downscale the data because no mathematical 
relationship could be derived from the data sets due to using 
entirely different sensors. Any min-max scale or thresholding 
would have required that we examine over 100,000 data points 
to look for similarities between various falls and non-falls events. 
This would have required a considerable performance and 
computational complexity trade-off. 

A summary of all data sets is shown in the Table 2. 

6. RESULTS AND DISCUSSION 

To understand the working of the ML algorithm on our SoC, 
we used the k-NN classifier, one of the simplest classifiers, yet 
its performance competes with the most complex classifiers. The 
core of this classifier depends mainly on measuring the distance 
or similarity between the test and the train samples. The main 
aim of k-NN is to find the nearest neighbour of the query. Hence 
distance is the primary parameter in k-NN, and the method used 
to calculate the distances also has a huge impact on the accuracy 
of the predictions. We have used three of the distance methods, 
a. Manhattan, b. Euclidean and c. Minkowski. As described in 
section 5, we worked with multiple datasets; SmartWatch, 
SmartFall, Notch and BITS dataset. This was to understand the 
effects of data collection and the impact of the dataset size and 
features on the accuracy of the ML model. Furthermore, to 
understand the limitations of the dataset sizes that the SoC could 
handle, we used raw and cleaned data from a SmartWatch, 
SmartFall, Notch and BITS dataset, all downsampled to 20 Hz. 
Feature extraction essentially involved the calculation of 
statistical parameters as described in Section 5. Statistical analysis 
of the data is usually done on the cloud. Since we plan to run the 
ML Algorithm on the SoC itself, it is not logical to do the feature 
extraction on the cloud and transmit them back to the SoC. 
Hence the feature extraction happens on the SoC itself. 

We ran the algorithms on varying computing architectures. 
1. Apple M1 pro running at a frequency of 3.2 GHz 
2. Intel i9 12th gen operating at 5.2 GHz 
3. Qualcomm 410c working at 2.4 GHz. 

We tried random data splits of 80-20, 70-30 and 60-40 while 
testing on M1 pro and Intel i9 architectures. We also ran the ML 
algorithms on both the raw dataset and the feature extracted 
dataset. In this section, for better understandability, we only 
present the results of the 70-30 splits of the feature-extracted 
data in graphical form. The rest of the results is presented as part 
of the discussion. 

All graphs plotted are of k vs accuracy with a p-value 
mentioned on the graph for different values of k. 

Figure 8 gives the accuracy of the feature extracted notch 
dataset. It can be observed from Figure 8 that the Manhattan 
distance gives the best accuracy at 96.12 %, and the lowest 
accuracy is that of Euclidean at 95.61 %. We ran the Minkowski 
distance-based k-NN for varying values of p, and we observed 

Table 2. Summary of datasets used in this paper. 

Data set Activities 
Data points 

(Raw) 

Data Points 
(feature 

extracted) 

Test 
Subjects 

Age 

BITS 3000 1,249,050 47,656 10 20-22 

Notch 698 10,645 218 7 20-35 

SmartWatch 771 34,019 367 7 21-55 

Smart Fall 1027 92,780 182 14 21-60 

Fused 2496 137,444 765 28 20-60 
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that we got the best accuracy at a p-value of 1.1. The accuracy 
obtained for Minkowski was 95.91 %. This is close to the 
accuracy of Manhattan since the p-value of Manhattan is 1 and 
Minkowski is 1.1. The variation in accuracy between them is just 
0.3 %. 

When raw data was used, the accuracies for all the distance 
metrics was 91.82 % but for different values of k. In the case of 
Manhattan, the k-value was found to be 19, Euclidean 17 and 
Minkowski 15, with a p-value of 1.5. This shows that feature 
extraction gives good accuracies even with small and noisy 
datasets. The best accuracies were obtained for Manhattan in the 
case of Notch. Manhattan usually gives better results when the 
dimensionality of the data is large, especially the impact can be 
observed with small datasets. In the case of Notch, the number 
of data points is 218 while the number of features extracted is 
28, indicating high dimensionality [27]; shows that when the 
dimensionality is high for small and noisy data, Manhattan 
distance is preferred. For dimensionality of 20 or higher, 
Manhattan distance provides significantly higher contrast relative 
to Euclidean distance. This can also be seen in the results because 
Minkowski gives an accuracy of 95.91 % at a p-value of 1.1, 
making it closer to the Manhattan distance as compared to the 
Euclidean distance. With the increase in data size, as we move on 
to SmartWatch and SmartFall as can be observed from Figure 9 
and Figure 10 respectively, the performance of Minkowski is 
slightly better; with an accuracy of 97.09 % for a p-value of 1.1 
for SmartFall, and 94.68 % for a p-value of 1.6 for SmartWatch. 
For the Fused dataset as can be observed in Figure 11, the 
accuracy for Minkowski and Manhattan are the same at 94.91 %. 
Again, the p-value of Minkowski is 1.1, making it closer to 
Manhattan than Euclidean. 

In case of SmartWatch, Figure 10, there is a drop in accuracy 
even though the number of features extracted are more than that 
of Notch because the user age demographics for Notch is in the 
range of 21-35, while SmartWatch has a wider range of 21-55. 

Hence, the drop in accuracy as there might not be enough 
volunteers across the age range. When we gathered data for the 
second time, in the age range of 21-50, we used 41 users as we 
were looking for equal representation across the ages. Again, 
information is not available regarding the height and the weight 
of the users but assuming a wide range of 21-55, it is obvious that 
there would have huge variations in these parameters. Variation 
in height and weight has huge impact on accelerometer data. 
Hence, there have been very less training instances considering 
the wide user demographics, thus causing a slight fall in the 
accuracy of results. 

In case of SmartFall dataset, the user age demographic is 
between 21-60 but the number of users was 14 and they 
performed more than 1000 activities. Hence, there was no dearth 
in the training data. In case of the Fused dataset, Figure 11, the 
accuracies are at 94.91 % because we combined three completely 
different datasets together with varying ADL and fall activities. 
The website for SmartWatch, SmartFall , and Notch does not 
provide the details for these activities, so it is possible that 
completely different activities were done for the three datasets. 

k-NN tries to find similarities and differences to classify an 
activity as Fall or ADL but considering that the activities for the 
three datasets may have been completely different, it would not 
have been possible to just rely on the distances to get the correct 
prediction. 

In case of the raw data, the accuracies are consistently lower 
with extremely high k-values. For feature extracted data, k was 
consistent at 3. In case of raw data, the k-value varied from 15 to 
61. The increase in k-values is consistent with the increase in data 
points. There is not much difference between the k-values 
required for the three distances, that is Manhattan, Euclidean and 
Minkowski. If Manhattan had a k-value of 59, then Euclidean 
had 61, but there was a constant increase in the k-value with the 
number of datapoints. In case of Notch, it was in the range of 31 
to 33. In case of SmartFall, it was in the range of 43 to 45. In case 

 

Figure 8. Accuracies of Notch Features vs k.  

 

Figure 9. Accuracies of SmartFall Features vs k.  

 

Figure 10. Accuracies of SmartWatch Features vs k.  

 

Figure 11. Accuracies of Fused Features vs k.  
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of SmartWatch, it was in the range of 35 to 37. In case of Fused 
data, it was in the range of 59 to 61. 

We had also done the 80-20 data split and 60-40 data split 
though it has not been plotted here, for which the accuracies 
were lesser than that of the 70-30 data split by 1.5 % in almost 
all cases. In case of feature extracted dataset, the k value 
continues to remain at 3, in case of the raw dataset though there 

was no significant drop in accuracy, there was variation in the k 
value. The k value was between 15 to 17 for notch in case of 80-
20 data split, 33 - 37 in case of 70-30 data split, and 31 – 33 in 
case of 60 – 40 data split. In case of SmartWatch for the 80-20 
data split the k values were between 17-19 and 35-37 for 70-30 
split, and 27-29 for 60-40 data split. Again, there was no 
significant variation in accuracy. In case of SmartFall for the 80-
20 data split, the values were between 27-33 and 43-45 in case of 
70- 30 split and 23 - 29 for 60-40 split. In case of Fused it was 
59-61 for all the data splits. Again, there was no variation in 
accuracies.  

The increase in k value can be attributed to the fact that there 
is large amount of data in the raw format, and these are values 
that are sensed continuously at an interval of 1 s/20 = 0.05 s. 
Hence, values will be similar, therefore the k values which 
produce good accuracies would be higher. The downside of 
having high k values is that the latency increases with k. 

We are more concerned with the latencies of the 410c. In case 
of Notch , the latencies of the CPU, as can be observed from 
Figure- 12 , they were in the range of 1 – 4 ms. In case of 410c, 
it varied between 26 ms to 72 ms. 

In case of 410c, as seen in Figure 13 the latency was minimum 
in case of the Euclidean distance, but irrespective of the 
difference the latency among the distances, it is quite high 
because our actual sampling rate was 1 ms, later we down 
sampled it to 50 ms to maintain uniformity between the three 
datasets. 

The Euclidean distance metric corresponds to the L2-norm 
of a difference between vectors and vector spaces. The cosine 
similarity is proportional to the dot product of two vectors and 
inversely proportional to the product of their magnitudes. Hence 
calculation of Euclidean distance incurs lesser latency. As the size 
of the dataset increases the latency also increases as can be 
observed from the graphs. In case of SmartFall it ranges between 
1 ms to 3 ms in case of CPU as seen in Figure 14, and 23-54 ms 
in case of the SoC as seen in Figure 15. In the case of 
SmartWatch the latencies were observed in the range of 3 ms to 
9 ms in case of CPU as seen in Figure 16 and between 35 to 170 
ms in case of the SoC as can be observed in Figure 17. In the 
case of Fused dataset the latencies were observed in the range of  
6 ms to 19 ms in case of CPU as can be observed in Figure 18 
and between 70 – 340 ms in case of SoC as can be seen in 
Figure 19. In the Fused dataset we combined the data from 
Notch, SmartFall and SmartWatch. The latencies were greater 
than 70 ms, in which time 35 samples would have already been 
taken from the users hence, as the dataset becomes larger, raw 
data cannot be used with SoCs, even feature extracted data 
cannot be used on SoCs. Hence, feature pruning or feature 
selection would be required. 

In the BITS data set, we have 47,656 data points covering 20 
activities. The peak accuracy of the BITS data set is obtained at 
k = 27 for all 3. The difference here is in the case of Manhattan; 
we get a better performance of 85.4701 % compared to 
Minkowski (82.906 %) and Euclidean (82.906 %). The latencies 
obtained in the case of the BITS data set are slightly lesser, with 
the latency being 2 ms at k = 27 for Manhattan and Minkowski, 
whereas it is at 3 ms for Euclidean on the Apple M1 processor. 
In the case of Euclidean and Minkowski, the peak latency is 
44 ms at peak performance for Euclidean and Minkowski and 
0.048 ms for Manhattan. It can also be seen that the latency 
values do not increase with an increase in k. One of the reasons 
we could get from the data set was that the age of the subjects 
was almost the same, varying between 20-22 years, with none 

 

Figure 12. CPU Latency of Notch Features vs k.  

 

Figure 13. 410c Latency of Notch Features vs k.  

 

Figure 14. CPU Latency of SmartFall Features vs k.  

 

Figure 15. 410c Latency of SmartFall Features vs k.  
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having any history of illness or falls. Hence the accuracies are 
lower, and latencies are lesser. As described in Section 5, besides 
the accelerometer data, the BITS data set also has gyroscope data, 
heart rate, and a few other parameters. When k-NN was used 
with all these sensors, we obtained a peak accuracy of approx. 
91 %, which is comparable with other data sets. The accuracy of 
results also depends upon the accelerometer's accuracy, details of 

which are provided in Section 5. Also, as all the subjects were in 
the same age range, there is very little difference in acceleration 
values regarding fall and non-fall values. 

Figure 20 and Figure 21 give the accuracy and latency of the 
BITS dataset on Apple M1 pro. 

Figure 22 and Figure 23 give the accuracy and latency of BITS 
dataset on Qualcomm 410c. 

Looking at the varying data sets, we can draw the following 
conclusions: (i) The accuracy increases with the size of training 
data, (ii) The latencies are very high as the amount of data 
collected is more, (iii) Statistical analysis must be performed 
before running the ML algorithm on the dataset. (iv)  It is 
impossible to run ML algorithms on the SoC. k-NN, also 
considered an algorithm that does not require much pre-training, 
is one of the simplest algorithms to give accuracies above 90 %, 
even with 10,000 data points requiring latencies more significant 
than 8 s. Hence, compressed ML algorithms are needed on a 
compressed data set. (v) When we try running the algorithm on 
raw data sets without statistical analysis, 410c repeatedly kills the 
process as it cannot handle large data. 

7. SUMMARY AND CONCLUSIONS 

Currently, Deep Learning techniques are being used for Fall 
detection. DL techniques used on SmartWatch, SmartFall and 
Notch datasets gave accuracies in the range of 98.2 %, 99.6 % 
and 99 %, respectively, when using CNN (Convolution neural 
networks) [28] on the cloud; some papers [29] implement RNN 
on STM-32 and DL algorithms only take 1 s for execution. 
However, the pre-trained and the dataset size used had only 22 
thousand points. Some data were alert or pre-fall alert, and the 
rest was fall. The model was pre-trained to detect pre-falls and 
falls and gave an accuracy of 75 %. When we tried to reproduce 
the results by running ML algorithms on STM-32 with the BITS 
dataset, which had around 3,000 activities and 47,656 data points, 
we got an accuracy of 77 %. Neither 75 % nor 77 % are good 
accuracies, especially considering the prediction is for safety-
critical Geriatrics applications. 

Hence, we have opted to use high-performance advanced 
architecture SoCs. Though SoCs provide accuracies equivalent 
to advanced processors such as Intel i9 and Apple M1 pro, we 
could not run the training and testing for more than ten epochs. 
In the case of the Fused dataset for ten epochs, the SoC took 
approximately 4 hr to complete. These were just accelerometer 
data and one of the simpler algorithms, which was k-NN. We 

 

Figure 16. CPU Latency of SmartWatch Features vs k.  

 

Figure 17. 410c Latency of SmartWatch Features vs k.  

 

Figure 18. CPU Latency of Fused Features vs k.  

 

Figure 19. 410c Latency of Fused Features vs k.  

 

Figure 20. Accuracy vs k BITS data M1 pro.  

 

Figure 21. Latency vs k BITS data M1pro.  
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obtained an accuracy of around 91 %. Our results also indicate 
that accuracy increases with the data size; from the results, we 
can also conclude that when features are extracted, the 
performance improves. We need to run both the feature 
extraction and the ML algorithm on the SoC. The results we have 
shown only include the data loading and testing time but not the 
time taken for feature extraction. The time for feature extraction 
may be high depending on the number of features that must be 
extracted, and the sensors used. When multiple sensors are used, 
the amount of data increases. In our research, we intend to use 
data from the 3-axis accelerometer, Gyroscope, and 
magnetometer, as well as data from heart rate sensors, SpO2 and 
galvanic skin sensor, which would mean that the number of 
dimensions would be 94. Hence, the time taken for the algorithm 
to perform feature extraction and predict the outcome will be 
extremely high. Therefore, it becomes necessary that if we need 
to use an SoC-based system, the features need to be pruned as 
well as the Ensemble ML algorithm must be compressed. When 
we tried running Ensemble techniques on data gathered from 41 
users, we got an accuracy of over 96 %. However, the size of the 
dataset and features extracted were very large, and the latencies 
incurred for feature extraction were several minutes. In our 
future work, we propose to prune the extracted features and use 
compressed Ensemble techniques that can run on the SoCs with 
minimum features. 
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