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1. INTRODUCTION 

The performance of most motor tasks requires the use of 
cognitive resources [1]. Cognitive resources, also called 
Executive Functions (EFs), are a set of neurocognitive processes 
necessary for the organization, planning and regulation of daily 
life actions [2]. According to Diamond et. al [3], the basic EFs 
are working memory, i.e., the ability to keep in mind information, 
inhibition, i.e., the ability to interrupt a motor and/or cognitive 
response no longer appropriate to the circumstances, and the 
cognitive flexibility, i.e., the ability to adapt to rapidly varying 

circumstances. The more demanding an activity, the greater the 
cognitive demand.  

Humans are involved in the simultaneous performing of 
several activities most of the time. It is common for humans to 
walk and talk on their mobile phones at the same time, or play 
sports and listen to music. According to the attentional capacity 
theory, humans have limited cognitive capacity, so when the 
performed activities require cognitive resources that exceed 
those available, there is a decrease in performance quality [4]. 
Moreover, if a task is too demanding and the required brain 
resources exceed a certain threshold, cognitive processing of 
further tasks may be precluded [5]. Therefore, understanding 
how cognitive resources are allocated during tasks is crucial and 
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A feasibility study on electroencephalographic monitoring of executive functions during dual (motor and cognitive) task execution is 
presented. Electroencephalographic (EEG) signals are acquired by means of a wearable device with few channels and dry electrodes. 
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allows improving the user-task interaction by adapting the task 
to the cognitive state [6]. The cost of performing a dual task is 
greater in the elderly and in people with neurodegenerative 
conditions; therefore, monitoring how cognitive resources are 
allocated in a dual task context is particularly useful. In these 
people, cognitive resources and the ability to allocate them 
properly are limited. Therefore, monitoring a condition of 
cognitive resources fatigue makes it possible both to predict risks 
(i.e., risk of falling), and to set up rehabilitation interventions 
aimed to strengthen the cognitive resources and their correct 
allocation [4]. Neurophysiological measures are particularly 
suitable for monitoring cognitive resource fatigue in a dual-task 
context as they provide direct and continuous information on the 
subject’s brain state. Among them, electroencephalographic 
(EEG)-based methods are becoming increasingly important due 
to their high temporal resolution and good real-time 
performance [7]. Moreover, wearable devices are becoming more 
and more reliable in signal acquisition [8], [9], also allowing 
monitoring of EEG outside laboratories and clinical settings [10], 
[11], [12], [13].  

Several bio-markers linked to the activation and fatigue of the 
basic executive functions are proposed in the literature. In 
particular, EEG Power Spectral Density (PSD) have been 
extensively studied [14], [15] in Fz, Cz, Pz, Fz, C3 [16], [17], [18], 
[19] but the link between activation and fatigue of a particular 
executive function and the PSD is not yet unambiguously 
defined. This study investigates the neural correlates of 
Executive Functions during a dual task execution. The use of a 
highly wearable device minimizes the interferences on the 
execution of the ambulation in a spontaneous way. In particular, 
the aims are (i) EEG-based identification of working memory 
and inhibition activation during walking, and (ii) the investigation 
of the most informative EEG features about activation levels of 
a specific executive function. 

2. MATERIAL AND METHODS 

2.1. Experimental sample 

Five healthy males voluntarily chose to participate in this 
study. The following inclusion criteria were: age (20, 30), BMI < 
25 kg/m², absence of pain, no surgeries in the last 6 months, no 
muscle-skeletal injuries in the last 3 months, no skeletal 
dysmorphism and no cognitive impairment. They were all right-
handed and able to understand the purpose of this study. All the 
volunteers were informed in detail about the objectives of the 
project. Subjects authorized inclusion in the study by signing the 
informed consent form. In accordance to the declaration of 
Helsinki, ethical approval was obtained from the Ethics 
Committee of Psychological Research of University of Naples 
Federico II. 

2.2. Hardware and Software 

EEG data acquisition were acquired by the abmedica Helmate 
system. It is a wireless Class II A device used for EEG signal 
measurements [20]. It consists of an ultralight foam helmet 
capable of performing EEG-signal acquisition by means of dry 
electrodes. Helmate provides 10 dry electrodes arranged 
according to the international 10/20 positioning system: Fp1, 
Fp2, Fz, Cz, C5, C6, O1, O2, AFz (ref), and Fpz (Ground). A 
custom software was realized to provide the cognitive tasks and 
monitor and store the EEG signal [18]. Quantitative evaluation 
of walking was performed using an optoelectronic system 
composed of eight Smart-D cameras (BTS Bioengineering, Italy) 

set at a frequency of 100 Hz and two force platforms (BTS 
Bioengineering-Milano, Italy). Helen Hayes M.M. markers set 
protocol was used for 3D-stereophotogrammetric analysis [21]. 

2.3. Experimental protocol 

Participants entered a very quiet room and were explained the 
experimental protocol. After the subject sat down on a 
comfortable chair, the EEG-acquisition system was set up. The 
subject held a wireless controller with his right hand to perform 
cognitive tasks. The wireless controller was used instead of the 
vocal response to minimize muscular artifacts. Cognitive tasks 
employed for this study were: 

• Go-No Go task: participants were required to either respond 
(i.e., pressing designated key) or inhibit a response (not 
pressing designated key) depending on whether a go stimulus 
or a no-go stimulus was presented. The difficulty of the task 
increased by reducing the time between stimuli. The task 
predominantly activates inhibition. 

• N-back task: participants were presented a sequence of 
stimuli (i.e., a sequence of letters) one-by-one. For each 
stimulus, they needed to decide if the current stimulus was 
the same as the one presented N trials before. The load factor 
N varied according to the difficulty of the task. The task 
predominantly activates working memory. 

Task stimuli were provided acoustically to allow the subject 
to perform the task in motion. The study was divided into ten 
experimental trials for a total duration of approximately one 
hour. The recording of the EEG signal was carried out during 
the following conditions: 

• While the subject was seated and relaxed, preventing head 
movements. (1 minute); 

• While sitting and performing Go-No Go task at the first level 
of difficulty (5 minutes); 

•  While sitting and performing Go-No Go task at the second 
level of difficulty (5 minutes);  

• While sitting and performing N-back task at the first level of 
difficulty (1 minute); 

• While sitting and performing N-back task at the second level 
of difficulty (1 minute);  

• While walking naturally (1 minute); 

• While walking and performing Go-No Go task at the first 
level of difficulty (5 minutes); 

• While walking and performing Go-No Go task at the second 
level of difficulty (5 minutes); 

• While walking and performing N-back task at the first level 
of difficulty (1 minute). 

While walking and performing N-back task at the second level 
of difficulty (1 minute). 

The kinematic patterns were assessed for each subject, while 
walking barefoot on a 6 m walkway at a self-selected normal 
paced speed. At the end of the experiment, the subjects were 
asked to fill in two questionnaires: 

• System Usability Scale (SUS) to assess the usability of a 
system. It consists of a 10-item questionnaire with five 
response options, ranging from Strongly Agree to Strongly 
Disagree; 

The NASA Task Load Index (NASA-TLX) for the workload 
assessment. It consists of a 6-item questionnaire, rated within a 
100-points range. The workload is rated across six dimensions 
(mental demand, physical demand, temporal demand, effort, 
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performance, frustration level) to determine an overall workload 
rating. 

2.4. EEG data processing 

In the pre-processing phase, data were filtered by a fourth 
order bandpass Butterworth filter [0.5 - 45] Hz and the Artifact 
Subspace Reconstruction (ASR) [22] procedure was applied with 
a cut off equal to 15 to remove artifacts. The ASR is a 
component-based artifact removal method suitable for removing 
transient or large-amplitude artifacts. The ASR decomposes a 
signal into components, then automatically identifies a threshold, 
based on the distribution of the signal variance; finally, it rejects 
the noisy components above the threshold and reconstructs the 
signal by considering the remaining components. Then EEG 
tracks are divided into 1–s epochs and PSD in alpha ([8-13] Hz), 
theta ([4-8] Hz), beta ([13-20] Hz), gamma ([30-45] Hz) and delta 
([1-4] Hz) bands is computed. 

In the features selection phase, the Sequential Feature 
Selection (SFS) [23] is applied in order to identify the most 
significant features to discriminate among different conditions. 
The Support Vector Machine is the classifier adopted within the 
SFS. In particular, the selection of the most significant features 
is carried out for the following cases:  

(i) sitting baseline and walking baseline,  
(ii) sitting baseline and sitting easy N-Back execution,  
(iii) sitting baseline and sitting difficult N-Back 

execution,  
(iv) sitting easy N-Back execution and sitting difficult N-

Back execution,  
(v) sitting baseline and sitting easy Go-No Go 

execution,  
(vi) sitting baseline and sitting difficult Go-No Go 

execution,  
(vii) sitting easy Go-No Go execution and sitting difficult 

Go-No Go execution,  
(viii) walking baseline and walking easy N-Back 

execution,  
(ix) walking baseline and walking difficult N-Back 

execution,  
(x) walking easy N-Back execution and walking difficult 

N-Back execution,  
(xi) walking baseline and sitting easy Go-No Go 

execution,  
(xii) walking baseline and walking difficult Go-No Go 

execution, and  
(xiii) walking easy Go-No Go execution and walking 

difficult Go-No Go execution.  
Finally, the acquired data were divided into 1-s epochs, 

organized in the form [Epoch x Channel x Band] and were given 
in input to the SFS. 

3. RESULTS 

The SFS results are reported in the colour-map of Figure 1, 
Figure 2, Figure 3, Figure 4 and Figure 5 for each comparison. 
For each binary problem, channels are coloured if a band resulted 
the most discriminating for at least 3 out of 5 subjects. Motor 
performances did not statistically differ between conditions. This 
could be due to the small sample size. 

Also on cognitive performances, no statistical relevant 
differences emerged. However, results (Table 1) confirmed a 
high level of engagement in performing the required tasks. 

The overall mean accuracies for discriminating difficulty 
levels were (63.7 ± 7.8) % and (63.9 ± 6.3) % for Go-No Go and 
N-Back, respectively. 

4. DISCUSSION 

According to the literature, PSD in gamma and beta band 
increases in all cognitive processes requiring attention [24], [25] 
and activation of mnestic processes [26], [27]. In Figure 1, results 
on the most discriminating features between a condition of 
motor inactivity and one of motor activity are shown. PSD in the 
gamma band turns out to be the most discriminating feature in 3 
out of 5 subjects in Fp1, Fp2, Fz, C3, C4, Cz and O2. Motor 
activity requires activation of the areas responsible for walking 
and movement. An increase in power spectral density in the fast 
bands (beta and gamma) in the motor area and in the prefrontal 
area is expected when a subject is involved in a motor activity. 
Therefore, the results are consistent with expectations. In 
Figure 2, the beta- and gamma-band PSDs best discriminate the 
resting condition from that of cognitive activation due to the 
performance of the N-Back.  

These results are consistent with expectations since the N-
Back is a concentration and memory exercise and the beta band 
is linked to attention [25], concentration and motor 
programming [28], [29] while the gamma band is related to 
memory processes [26], [27]. The N-Back also requires acoustic 
attention, therefore, some form of activation is expected in the 
Brodmann area presiding over acoustic signal processing. In 
particular, an increase in the fast bands (beta and gamma) 
resulted at C3 and C4, the available channels nearest to the 
temporal area, responsible for processing acoustic information. 
In the occipital area, the PSD in alpha band emerges. The alpha 
rhythm is considered a thalamus-cortical or cortico-cortical 
interaction rhythm [30] and it is likely that a decrease in the alpha 
band occurs as a result of the cognitive engagement in 
demanding tasks [31]. As far as the two difficult level of Go-No 
Go task execution and its comparisons with the sitting baseline 
is concerned (Figure 3), the most significant feature is the PSD 
in the gamma band. This result is also consistent with the 
previous statements. 

 

Figure 1. Sequential Feature Selector Color-map in comparing sitting baseline 
and walking baseline. 

Table 1. Cognitive task performances. 

Task Condition 
Percentage of correct 

answers (%) 

Easy Go-No Go Sitting 
Walking 

99 ± 1 
100 ± 0 

Difficult Go-No Go Sitting 
Walking 

99 ±2 
97±2 

Easy N-Back Sitting 
Walking 

98 ± 2 
97±3 

Difficult N-Back Sitting 
Walking 

94 ±2 
92 ± 6 
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In the case of the comparison between the baseline acquired 
during walking and the N-Back and the N-Back tasks at two level 
of difficulties performed in motion (Figure 4), the 
discriminability between the various conditions seems to be 
related also to the delta and theta bands as well as alpha, gamma 
and beta. The delta-band PSD variation is probably due to 
motion artefacts, and frontal theta-band PSD variation could 
also be due to eye movements. 

Therefore, as far as memory is concerned, no discriminative 
elements emerge during walking and the function is not stressed 
enough to stand out against the background noise. The noise 
conditions between the two experiments were statistically 
comparable after a t-test application (p-value = 0.27). Finally, as 
far as the comparison between the two level of difficulties of Go-
No Go performed in walking and the walking baseline 
comparison is concerned, the PSD in gamma and beta bands in 
the frontal and motor area are the most discriminative features, 
consistently with what emerges when the subject is seated.  

However, the experiment is not pure from Executive 
Function overlaps that are not the subject of this study, because 
each proposed task does not only stimulate memory or 
inhibition. In fact, the acoustic channel is also employed by the 
proposed tasks, and thus there is a co-activation of neuronal 
systems of various areas that communicate with each other, e.g. 
the Brodmann area that processes the acoustic signal. In the case 
of walking, it can be concluded that the activation of memory is 

not discriminable while that of the inhibition function emerges 
more clearly. 

Due to limitations of the EEG device, some areas, such as 
temporal areas, responsible for mnestic processing, are not 
available. In a future study, PSD in beta2 band ([21-30] Hz) will 
be focused on, as it is the one mainly related to mnemonic and 
attentional processes. 

In the future, it could be interesting to exploit more wearable 
sensors for monitoring also gait [32] and/or further biosignals 
[33], [34]. 

5. CONCLUSIONS 

The neural correlates of Executive Functions were 
investigated during dual task execution. The use of a highly 
wearable device guaranteed the execution of the ambulation in a 
spontaneous way. Different degrees of involvement for working 
memory and inhibition were classified by means of different 
machine learning algorithms. A sensitivity analysis revealed the 
EEG features maximizing the classification accuracy. Power 
spectral density in the gamma band is the most relevant feature 
in discriminating between low and high levels of Inhibition. An 
equally high level of discrimination between high and low levels 
of activation of Working Memory is not reached. This study is a 
first step towards the implementation of a fall prevention system 
and represents a contribution to a more targeted definition of 
cognitive rehabilitation interventions. 

Further studies will be carried out by using devices with more 
electrodes also in the temporal areas to better monitor mnestic 
processes and by focusing on beta2 band. 
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