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1. INTRODUCTION 

This paper deals with the baseband modelling of the 
distortion at the output of a high speed (2.6 GHz) and high 
resolution (14 bits) commercially available ADC. This ADC 
features IQ demodulation, filtering and decimation, making it 
possible to select and reduce the useful frequency band of the 
signal thus digitized. We will use these capabilities later, and we 
are therefore interested in modelling distortion on complex 
signals, at the digitization output and downstream processing 
stages of the ADC.  

The objective is thus to propose a model on a complex 
analytical signal applicable at the output of the digitization chain 
(ADC, digital IQ amplitude/phase demodulation, and 
decimation) suitable for calibration and linearization. Although 
the targeted application is narrow band here, we propose to take 
into account the frequency dependence, similarly to a memory 
effect, with a view to versatility. Finally, these models aim to 
intervene at the end of the digital chain for practical reasons: 

1.  limitation in flow due to decimation, 
2. energy consumption, 
3. ease of implementation. 
The targeted application of this work is indeed an embedded 

application. The models considered must then present a limited 
complexity, facilitating their identification and the 
implementation of the linearization. 

The behavioural models described in the literature can be 
divided into two categories. The first one includes models that 
do not take into account the memory effect or frequency 
variation, mainly power-series models [1]-[3]. For effective 
broadband modelling, i.e. when the system to be modelled shows 
a variation of its distortion with frequency, we turn to the second 
category of models, those taking into account the memory effect. 
The most comprehensive model is the Volterra model [4]-[6], 
and many works relate to the simplification [7], rewriting [8]-[10] 
and truncation [11], [12], of this model. Volterra model indeed 
presents a consequent computational complexity. We quote in 
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particular models derived from the Volterra model, which are the 
models of Wiener [13]-[15], Hammerstein [16]-[18], as well as 
combinations and generalizations of these models [19]. These 
latter models, although presenting reduced computational 
complexities compared to the Volterra model, can however 
present a large number of coefficients, depending on the size of 
the associated filters, and require costly identification methods in 
terms of computational resources. 

Based on the previous comments, we propose an extension 
of a baseband polynomial model by involving the derivative of 
the sampled analytical signal, and thus by adding an 
instantaneous frequency dependence to this model. This writing 
thus makes it possible to model to a certain extent the variation 
of the non-linearity with the frequency. This method has been 
patented in 2015 [20]. 

This paper is organized as follows. We will first develop the 
distortion model on an analytical signal, and then add the 
instantaneous frequency dependence. Afterwards, the 
identification of these models will be studied, from spectral 
observations of the distortion of two-tone signals. A 
measurement bench is then presented, allowing the calibration 
of our ADC, and finally results of identification and linearization 
by compensation are shown. This paper is an extended version 
of [21]. 

2. MODELLING  

Any active analog or mixed system generates distortion spurs 
on its output. This is called a non-linear system. The simplest 
model allowing to illustrate this phenomenon is the polynomial 
model, or power-series model, describing a non-linear distortion. 

A polynomial model links the real input 𝑥(𝑡) of a nonlinear 

system to its output 𝑦(𝑡) by the following relation: 

𝑦(𝑡) =  ∑ 𝑎𝑝𝑥𝑝(𝑡)

𝑃

𝑝=0

≈ 𝑥(𝑡) + ∑ 𝑎𝑝𝑥𝑝(𝑡)

𝑃

𝑝=2

 , (1) 

with 𝑃 the order of non-linearity of the system, and the 𝑎𝑝 the 

coefficients of the model. The coefficient of order 0 is an offset 

(𝑎0 ≈ 0), and the 1st order coefficient is the linear gain of the 

system (𝑎1 ≈ 1). The nonlinear distortion is then contained in 
the high order terms. This separation in the distorted signal 
between the input signal and a function of distortion depending 
on the input signal allows a compensation of the defects by 
subtracting this part of distortion from the signal at the output 
of the system to be linearized. 

2.1. Baseband distortion modelling 

We find an expression for distortion defects on an analytical 
signal in [22]-[24]. This model is described in these papers as 
coming from the polynomial expansion of the complex envelope 

of an RF signal: 𝑥RF(𝑡) = 2ℜ[𝑥(𝑡) 𝑒𝑗 𝜔0 𝑡], where 𝜔0 is the 
pulse of the RF carrier frequency of the signal (using the notation 
of [22]). 

Our distortion model 𝐷(⋅) is based on the order 3 Volterra 
Baseband Series model, with no memory effect [24]: 

𝐷(3)(𝑥) = 𝛼 𝑥 |𝑥|2 . (2) 

This model can be extended to the order 2𝑃 + 1 as follows: 

𝐷(2𝑃+1)(𝑥) = 𝑥 ∑ 𝛼𝑘|𝑥|2𝑘

𝑃

𝑘=1

 . (3) 

The model presented so far does not present a frequency 
dependence, i.e. it does not allow to model a memory effect, 
being a variation of the non-linear distortion as a function of 
frequency. This point will be dealt with in the next subsection. 

2.2. Adding an instantaneous frequency dependence 

We here propose to add a dependence of the distortion on 
the instantaneous frequency of the signal. This instantaneous 

frequency will be noted 𝑓𝑖 . It is expressed as follows for a 

sinusoidal signal of natural frequency 𝑓0: 

𝑥(𝑡) = 𝑎 𝑒𝑗 𝜓(𝑡) with 𝜓(𝑡) = 2 π 𝑓0 𝑡 + 𝜙 , (4) 

𝑓𝑖(𝑡) =
1

2 π

𝜕𝜓(𝑡)

𝜕𝑡
=

1

2 π

𝜕

𝜕𝑡
(2 π 𝑓0 𝑡 + 𝜙) = 𝑓0. (5) 

The instantaneous frequency of a sinusoidal signal therefore 
corresponds to its natural frequency, the instantaneous frequency 
of a signal made up of two tones of the same level, to the average 
of the frequencies of the two tones. 

We have, 

𝑥′

𝑥
=

𝜕𝑥
𝜕𝑡
𝑥

= 𝑗
𝑎 2 π 𝑓0 𝑒𝑗(2 π 𝑓0 𝑡+𝜙)

𝑎 𝑒𝑗(2 π 𝑓0 𝑡+𝜙)
= 𝑗 2 π 𝑓0 . 

(6) 

Thus: 

𝑓𝑖(𝑡) =
1

2 π
ℑ [

𝑥′

𝑥
] =

1

2 π

ℑ[𝑥′𝑥∗]

|𝑥|2
 . (7) 

We therefore propose the following refinement to the 3rd 
order distortion model, Equation (2): 

𝐷𝑖
(3)(𝑥) = 𝐷(3)(𝑥) +  𝛽 𝑓𝑖  𝑥 |𝑥|2 = 𝑥(𝛼 + 𝛽 𝑓𝑖) |𝑥|2 , (8) 

i.e. 

𝐷𝑖
(3)(𝑥) = 𝑥 [𝛼 |𝑥|2 +

1

2 π
𝛽 ℑ(𝑥′𝑥∗)] . (9) 

2.3. Synoptic view in blocks of the model 

This model can be represented by a block diagram view (see 

Figure 1). The differentiator filter is called ℎD and its delay is 

written 𝜏D. It is compensated on the other channels so that the 

following operations are synchronous. The 
1

2 π
 factor of 

Equation (9) is absorbed here in coefficient 𝛽. We can finally see 
here linearization by compensation, by reconstructing the 
distortions from the input signal and then subtracting them from 
the signal. This point will be discussed in section 5. 

The following section deals with the identification of the 
presented models. 

3. IDENTIFICATION 

The identification of this model is done here from frequency 
observations of a well-known two-tone CW (Continuous Wave) 
signal, i.e. whose frequencies are known. The frequency 
identification of this model follows the work of [25]. This 
method is suitable for a model calibration phase. 
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3.1. Two-tone reference signal 

In this paper, we will focus on the response of a commercially 
available ADC to the excitation of a two-tone signal. This signal 
used for the calibration of the model, indeed makes it possible to 
reveal the defects which interest us here, namely the near-carrier 
inter-modulation. A two-tone signal also has several interesting 
advantages, an ease in the practical implementation of its 
generation, and a good coverage of the phase space allowing the 
excitation of the full dynamic range of the ADC [26]-[29]. 

For the calibration of the model, we look at the excitation of 
the ADC by a two-tone signal of the form: 

𝑥(𝑡) = 𝑎1𝑒𝑗 2 π 𝑓1 𝑡 + 𝑎2𝑒𝑗 2 π 𝑓2 𝑡 (10) 

with 𝑎1 and 𝑎2 the complex amplitudes of the tones of 

frequencies 𝑓1 and 𝑓2 respectively. 

3.2. Identification of the order 3 model with instantaneous 
frequency dependence 

The response of our distortion model with instantaneous 
frequency to the excitation of a two-tone signal develops as 
follows:  

𝑦(𝑡) =  𝑥(𝑡) + 𝐷𝑖
(3)

(𝑥(𝑡))

= 𝑥(𝑡) + 𝑥(𝑡)(𝛼 + 𝛽 𝑓𝑖)|𝑥(𝑡)|2

= 𝑎1𝑒𝑗 2 π 𝑓1 𝑡 + 𝑎2 𝑒𝑗 2 π 𝑓2 𝑡

+ (𝛼 + 𝛽 𝑓𝑖) [(𝑎1
3 + 2 𝑎2

2 𝑎1)𝑒𝑗 2 π 𝑓1 𝑡

                     + (𝑎2
3 + 2 𝑎1

2 𝑎2)𝑒𝑗 2 π 𝑓2 𝑡

                     + 𝑎1
2 𝑎2

∗  𝑒𝑗 2 π (2 𝑓1−𝑓2)𝑡

                     + 𝑎1
∗ 𝑎2

2 𝑒𝑗 2 π (2 𝑓2−𝑓1)𝑡] .

 (11) 

For the identification of the coefficients 𝛼 and 𝛽, we will use 

the results of two measurements, 𝐴 and 𝐵, around the 

instantaneous frequencies 𝑓𝑖
(𝐴)

 and 𝑓𝑖
(𝐵)

. These two frequencies 

will be chosen as the extremities of the band in which the ADC 
will be modelled. 

In our case, the modelling will be performed in a band 𝐵𝑤 of 

a few hundreds kHz to a few MHz, around the RF carrier 𝑓0. We 

thus have 𝑓𝑖
(𝐴)

= 𝑓0 −
𝐵𝑤

2
 and 𝑓𝑖

(𝐵)
= 𝑓0 +

𝐵𝑤

2
. 

Around these two frequencies 𝑓𝑖
(𝐴)

 and 𝑓𝑖
(𝐵)

, frequencies of 

fundamental tones 1 and 2 are written 𝑓1
(𝐴)

and 𝑓2
(𝐴)

for 

measurement 𝐴, and 𝑓1
(𝐵)

and 𝑓2
(𝐵)

for measurement 𝐵. Complex 

amplitudes and phases of the measured tones are written 𝑀. 
Figure 2 summarizes all the notations used for this identification 
process. 

 

Figure 1. Synoptic model (order 3 with instantaneous frequency dependence) of reconstruction of distortion and compensation. 

 

Figure 2. Identification of the order 3 model with instantaneous frequency dependence. Two measurements A and B are performed around instantaneous 

frequencies 𝑓𝑖
(𝐴)

 and 𝑓𝑖
(𝐵)

 bordering the band of interest, of central frequency 𝑓0. On the top, the output of the model. On the bottom, tones observed on the 

measurements performed. These measurements are identified to the model output, to retrieve coefficients 𝛼 and 𝛽. 
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We then have to solve the following system. The coefficients 
are obtained by averaging a redundant observation of the model: 

(𝛼 + 𝛽 𝑓𝑖
(𝐴)

) =
1

2
[
𝑀

2𝑓1
(𝐴)

−𝑓2
(𝐴)

𝑀
𝑓1

(𝐴)
2 𝐴

𝑓2
(𝐴)

∗ +
𝑀

2𝑓2
(𝐴)

−𝑓1
(𝐴)

𝑀
𝑓2

(𝐴)
2 𝑀

𝑓1
(𝐴)

∗ ] = 𝛾(𝐴)

(𝛼 + 𝛽 𝑓𝑖
(𝐵)

) =
1

2
[
𝑀

2𝑓1
(𝐵)

−𝑓2
(𝐵)

𝑀
𝑓1

(𝐵)
2 𝑀

𝑓2
(𝐵)

∗ +
𝑀

2𝑓2
(𝐵)

−𝑓1
(𝐵)

𝑀
𝑓2

(𝐵)
2 𝑀

𝑓1
(𝐵)

∗ ] = 𝛾(𝐵).

 (12) 

This system then resolves to: 

𝛼 =
𝑓𝑖

(𝐴)
𝛾(𝐵) − 𝑓𝑖

(𝐵)
𝛾(𝐴)

𝑓𝑖

(𝐴)
− 𝑓𝑖

(𝐵)

𝛽 =
𝛾(𝐴) − 𝛾(𝐵)

𝑓𝑖

(𝐴)
− 𝑓𝑖

(𝐵)
 .

 (13) 

For this identification phase, the frequencies of the two tones 

being known, the instantaneous frequencies 𝑓𝑖
(𝐴)

 and 𝑓𝑖
(𝐵)

 are 

obtained as follows: 

𝑓𝑖
(𝐴)

=
𝑎1

2 𝑓1
(𝐴)

+ 𝑎2 
2 𝑓2

(𝐴)

𝑎1
2 + 𝑎2

2

𝑓𝑖
(𝐵)

=
𝑏1

2 𝑓1
(𝐵)

+ 𝑏2
2 𝑓2

(𝐵)

𝑏1
2 + 𝑏2

2

 (14) 

with 𝑎1 and 𝑎2 the complex amplitudes of the two tones of the 

first measurement, around 𝑓𝑖
(𝐴)

, and 𝑏1 and 𝑏2 the frequencies 

of the two tones of the second measurement, around 𝑓𝑖
(𝐵)

. 

3.3. Identification of the model up to order 7 with no frequency 
dependence 

Order 3 intermodulation brings spurs that are the most 
powerful in the signal. Intermodulation amplitude then decreases 
as its order increases. IMD3 therefore is the main defect limiting 
instantaneous dynamic range. That explains why the first model 
developed simply was at order 3. There are two reasons for 
considering a higher order model. The first one is to be able to 
enhance even further the dynamic range, by also compensating 
for higher order defects. Once IMD3 is mitigated, the remaining 
defects limiting dynamic range indeed are intermodulation spurs 
of higher order. The second reason for considering higher order 
intermodulation in the model is to take into account the variation 
of distortion with level [25]. An order 3 model is capable of 
modelling linear variation of distortion according to input level. 
An order 5 one models quadratic variation and an order 7 model 
is able to reproduce cubic variation of distortion with level. The 
downside is a slight increase in complexity of modelling and 
identification but more importantly, order 7 defects are harder to 
identify accurately as they are closer to the noise floor. 

The response of an order 7 baseband distortion model, 
Equation (3) to the excitation of a two-tone signal develops as 
follows: 

𝑦(𝑡) = 𝑥(𝑡) + 𝐷(7)(𝑥(𝑡))

= 𝑥(𝑡) + 𝑥(𝑡)(𝛼1 |𝑥|2 + 𝛼2 |𝑥|4 + 𝛼3 |𝑥|6)

= 𝑎1𝑒𝑗 2 π 𝑓1 𝑡 + 𝑎2𝑒𝑗2 π 𝑓2 𝑡

+ 𝑎1
2 𝑎2

∗𝑒𝑗 2 π (2 𝑓1−𝑓2)𝑡[𝛼1 + 𝛼2(2 |𝑎1|2 + 3 |𝑎2|2)

               + 3 𝛼3 (|𝑎1|4 + 2 |𝑎2|4 + 4 |𝑎1|2|𝑎2|2)]

+ 𝑎1
∗ 𝑎2

2𝑒𝑗 2 π (2 𝑓2−𝑓1)𝑡[𝛼1 + 𝛼2(3 |𝑎1|2 + 2 |𝑎2|2)

               + 3 𝛼3 (2 |𝑎1|4 + |𝑎2|4 + 4 |𝑎1|2|𝑎2|2)]

+ 𝑎1
3 𝑎2

∗ 2 𝑒𝑗 2 π (3 𝑓1−2 𝑓2)𝑡[𝛼2 + 𝛼3|𝑎2|2]

+ 𝑎1
∗2 𝑎2

3 𝑒𝑗 2 π (3 𝑓2−2 𝑓1)𝑡[𝛼2 + 𝛼3|𝑎1|2]

+ 𝑎1
4 𝑎2

∗ 3 𝑒𝑗 2 π (4 𝑓1−3 𝑓2)𝑡  𝛼3

+ 𝑎1
∗3 𝑎2

4 𝑒𝑗 2 π (4 𝑓2−3 𝑓1)𝑡  𝛼3

 (15) 

with 𝑎1 and 𝑎2 the complex amplitudes of the two tones of 

respective frequencies 𝑓1 and 𝑓2, and 𝛼1, 𝛼2 and 𝛼3 the 
parameters of the model. 

By identifying the model with the tones at the ADC output 
(see Figure 3), we get: 

𝑀1 = 𝑎1

𝑀2 = 𝑎2

𝑀3 = 𝑀1
2 𝑀2

∗ [𝛼1 + 𝛼2(2 |𝑀1|2 + 3 |𝑀2|2)

+ 3 𝛼3(|𝑀1|4 + 2 |𝑀2|4 + 4 |𝑀1|2|𝑀2|2)]

𝑀4 = 𝑀1
∗ 𝑀2

2[𝛼1 + 𝛼2(3 |𝑀1|2 + 2 |𝑀2|2)

+ 3 𝛼3(2 |𝑀1|4 + |𝑀2|4 + 4 |𝑀1|2|𝑀2|2)]

𝑀5 = 𝑀1
3 𝑀2

∗2
 [𝛼2 + 𝛼3 |𝑀2|2]

𝑀6 = 𝑀1
∗2 𝑀2

3 [𝛼2 + 𝛼3 |𝑀1|2]

𝑀7 = 𝑀1
4 𝑀2

∗3
 𝛼3

𝑀8 = 𝑀1
∗3

 𝑀2
4 𝛼3 .

 (16) 

From here, the expression of the coefficients of the model are 
obtained by inversing the system upwards: 

𝛼3 =
1

2
[

𝑀7

𝑀1
4 𝑀2

∗3 +
𝑀8

𝑀1
∗3

 𝑀2
4

]

𝛼2 =
1

2
[

𝑀5

𝑀1
3 𝑀2

∗2 +
𝑀6

𝑀1
∗2 𝑀2

3
] −

7

2
𝛼3(|𝑀1|2 + |𝑀2|2) 

𝛼1 =
1

2
[

𝑀3

𝑀1
2 𝑀2

∗ +
𝑀4

𝑀1
∗ 𝑀2

2] −
5

2
𝛼2(|𝑀1|2 + |𝑀2|2)

−
3

2
𝛼3(3 (|𝑀1|4 + |𝑀2|4) + 8 |𝑀1|2|𝑀2|2) .

 (17) 

Going to order 7 here makes it possible to bring precision on 
the lower orders. Each order of nonlinearity indeed contributes 
to the lower terms. The terms of order 7 will then present a linear 
variation with respect to the level, the terms of order 5 will 
present a quadratic variation, and the terms of order 3, those 
which interest us the most since limiting the instantaneous 
dynamic range the most, will present a cubic variation with 

 

Figure 3. Identification of the order 7 baseband model. 
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respect to the level. The modelling of the variation of the 
distortion tones of order 3 with respect to the level is therefore 
all the more precise as the order of distortion observed grows. 

3.4. Special remark for the identification of the frequency 
dependence model 

When injecting our two-tone signal, Equation (10), in 
Equation (7), describing the instantaneous frequency from the 

analytical two-tone signal 𝑧, we can develop: 

𝑓𝑖(𝑡) =
1

2 π
ℑ [

𝑧′𝑧∗

|𝑧|2
]

=
𝑓1 + 𝑓2

2
+

1

|𝑧|2
(|𝑎1|2 − |𝑎2|2)

𝑓1 − 𝑓2

2
 .

 (18) 

We then find that the instantaneous frequency depends on 
both the average frequency of the two-tone signal, and on the 
spacing between the two tones. So that the latter contribution 
appears in the calculation of the coefficient characterizing the 
instantaneous frequency, the identification must be carried out at 
different tones, and with a sufficiently big inter-carrier. 

The following section deals with the design of a test-bench 
suitable for the identification and linearization using previously 
described methods. 

4. EXPERIMENTAL SETUP 

In order to validate the theoretical concepts developed in the 
previous sections, we build the following experimental setup (see 
the synoptic in Figure 4 and the picture of the bench in Figure 5). 

The two-tone signal used as a reference for the calibration is 
generated by two vector signal generators (VSG A and VSG B). 

Each sends a CW signal, one at frequency 𝑓1, and the other at 

frequency 𝑓2, and the two-tone signal is then assembled by a 
coupler. This signal could be generated by only one of these 
instruments, but the linearity of the input signal would not be 
sufficient for the precision required by our measurements. The 
presence of attenuation in the assembly, between the VSGs and 
the coupler, also makes it possible to improve the linearity of the 
reference signal during calibration, by attenuating twice (due to 
the goings and comings routes), any bounces in the assembly. 

A band-pass filter is then used to remove out-of-band noise 
that can fall back during digitization. Finally, the ADC studied is 
a commercially available ADC (AD9689, 14 bit, 2.6 Gsps), 
mounted on its acquisition card. The latter is used to configure 
the ADC and to recover the points captured at the PC level. Two 
clock generators are used, one for the ADC clock, and the other 
for the acquisition card reference clock, for data transfer. 

The various measurement and generation instruments are 
controlled from MATLAB via USB. Finally, all the instruments 
share the same reference (10 MHz) which allows them to operate 
synchronously. 

The presented identification method is deterministic. The 
only statistical bias of the identification comes from thermal 
noise (at signal generation, in the different components, and at 
digitization). The identification of the parameters of the model is 
therefore all the more accurate, as the observation of the tones 
of interest is. This accuracy is harder to obtain as we observe 
higher orders of distortion. In Fine, the accuracy of the 
identification lies with the accuracy of the observation of 
fundamental and spurious tones, meaning their amplitudes 
relative to the noise floor level. 

The following section deals with some linearization results 
obtained from acquisitions performed using the previously 
described test-bench. 

5. LINEARIZATION 

We present in this section linearization results of an ADC 
using the model, the identification method, and the measurement 
bench, described in the previous sections. 

5.1. Linearization results 

To linearize the signal at the output of the ADC from the 
proposed model, the distortions are reconstructed from the 
distorted signal itself (see Figure 1). Indeed, the signal is assumed 

 

Figure 4. Experimental setup synoptic - 𝑓𝑠 is the sampling frequency of the signal. 

 

Figure 5. Picture of the experimental setup. On the left from top to bottom, 
the two clock generators of the ADC and its acquisition card, and the 
spectrum analyzer. On the right, the two VSGs generating the two tones of 
the two-tone signal. In the foreground, the ADC on the left, mounted on its 
acquisition card, on the right. 
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to be weakly non-linear, that is to say that the parasitic spurs are 
at a sufficiently low level for their contributions in the 
reconstruction of the distortions to be negligible. 

We thus observe some linearization results in Figure 6, using 
our order 3 model with instantaneous frequency dependence, 
and a simply baseband polynomial order 7 model. 

These results demonstrate the effectiveness of the 
compensation with the proposed models. The SFDR (Spurious 
Free Dynamic Range) is indeed improved up to 27 dB. 

5.2. Frequency dependence 

To illustrate the relevance and efficiency of the model 
depending on the instantaneous frequency, we observe the 
variation of IMD3 (Order 3 intermodulation) in a frequency 
band. It is then necessary to calibrate the compensation model 

(here simply to order 3) and note that a simple coefficient 𝛼 alone 
cannot translate a variation in frequency of the IMD3, i.e. a 
memory effect. The instantaneous frequency model is then 
calibrated on the same band, so as to reproduce this behaviour. 
The calibrated coefficients and compensation results can be seen 
in Figure 7. 

This model is limited here to a linear variation of the IMD3 
as a function of the instantaneous frequency, which can be 
associated with a narrow band behaviour of the ADC. To model 
more complex behaviours of the IMD3 with regards to 
frequency, this model would then have to be extended to a 
polynomial frequency dependence. 

In a band here of about 300 MHz, we observe that for a given 
level, the IMD3 evolves to a certain extent, linearly with the 
instantaneous frequency. The proposed model is therefore 
adapted to the observed behaviour. This is validated by the 
compensation results in Figure 7. The SFDR is indeed better at 
the edge of the band, of the order of 6 dB, between the two 
corrections carried out. The model with instantaneous frequency 
dependence presents the best results. 

This modelling with instantaneous frequency dependence is 
particularly suitable for modelling ADCs, where the dynamic part 
of the distortion is partly due to the slew rate limitation. The 
latter translates into increasingly difficult tracking as the slope of 
the signal increases, and therefore depends on its rate of 
variation, or its derivative. The derivative of the signal is finally 
found in the expression of the instantaneous frequency, see 
Equation (7), which results in a linear variation of the distortion 
with the frequency, which we observe in Figure 7. 

5.3. Issue with IMD3 dissymmetry 

In the results of linearization of Figure 6, a residual distortion 
can be observed, the compensation of the defects is not total. 
This is explained in particular by the fact that for two 
fundamental tones of the same level, the parasitic 
intermodulation spurs exhibit slight dissymmetries in amplitude. 
Coming back to the identification method, we have defined the 
coefficients of the models as being averages of the coefficients 
that would be obtained by considering only the left or right 
intermodulation, Equations (12) and (17). 

We then show the results of linearizations performed after 
identification of an order 3 model on either left or right 
intermodulation tone in Figure 8. 

 

Figure 6. (top) Coefficients of order 3 compensation models. 𝐴 is the 
magnitude of the fundamentals (assuming they are at the same level). 
(bottom) Linearization results using order 3 compensation models with and 
without instantaneous frequency dependence. 

 

Figure 7. Linearization results with baseband model at order 7 and model with frequency dependence at order 3 – On the left, fundamentals at -12 dBFS both, 
in the middle, fundamentals at -6 dBFS both, and on the right, fundamentals at -6 dBFS and -16 dBFS. 
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On this figure, we indeed observe three linearization results 
with a model of order 3, thus presenting a single coefficient (see 
section 2). In the first two cases, the linearization is carried out 
by identifying the coefficient on the left or right intermodulation 
product. The correction of this tone is therefore exact, but the 
overall correction of the signal is penalized, since it is less 
effective on the other tone. The compromise found therefore 
corresponds to the last result of Figure 8, where the coefficient 
of the model is obtained by arithmetically averaging the 
identifications of the left and right intermodulation products. It 
is indeed on this result that the SFDR (Spurious Free Dynamic 
Range) after linearization is the best. 

6. CONCLUSION 

In this paper, we have presented a baseband distortion model, 
with an instantaneous frequency dependence, in order to model 
a nonlinear frequency evolving behaviour. A method for 
identifying this model, based on a frequency observation of the 
application of a two-tone signal, is then presented. We finally 
built a measurement bench adapted to the implementation of the 
identification of this model. 

The results of modelling and linearization present effective 
mitigation of intermodulation products. The frequency variation 

of the distortion is modelled by the instantaneous frequency (𝑓𝑖) 
dependence. 

The main advantage of this model lies with computational 
complexity of identification (measurements on two-tone signals 
and FFT) and linearization (only two parameters for this model, 
and a digital filter to obtain the derivative of the signal). This is 
valid for narrowband applications where variation of distortion 
with frequency can be assumed to be linear. Traditional block 
models such as Wiener, Hammerstein, or combinations and 
generalizations of these two are much more complex in 
identification and linearization, but are able to model a richer 
dependence of distortion relative to frequency, with their 
combinations of static nonlinearity and filters, more suitable for 
wideband applications. 

When trying to improve the accuracy of the modelling or 
identifying models going to higher orders, in order to account 
for higher order intermodulation products, limiting dynamic 
range, it quickly appears crucial to get out of the noise floor. 
Indeed, the higher the distortion order observed, the lower the 
amplitude of the intermodulation products will be, approaching 
the noise floor. The solution is then to observe on longer time 
intervals, in order to integrate this measurement noise and to 
make the noise floor go down spectrally. 

To go further, the model with a dependence in instantaneous 
frequency could be studied for signals more complex than a two-
tone signal, not allowing to lift the correlation of the model on a 
single measurement. One could be inspired by the identification 
of Volterra kernels from white noise [30]. 

This method has been studied tested and presented on fast 
AD converters. Because of its generality, it could be applied to 
the modelling of other nonlinear systems (amplifiers or other 
structures of ADCs for example), also presenting this kind of 
behaviour of their dependence of distortion with frequency. 
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