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1. INTRODUCTION 

Proficiency tests (PT) are widely used to assess the 
performance of laboratories. Participating to such programs is 
required by ISO 17025 [1], which is the standard of reference for 
accreditation of laboratories.  

Reference standards for interlaboratory comparisons (ILC), 
ISO 5725-2 [2], ISO 13528 [3] and ISO 17043 [4] consider one 
or several aspects of the performance of laboratories: 

1. Assessment of the bias of participants. D, D% and z-
scores (or equivalents) are related to this assessment; 

2. Assessment of the uncertainties on test results 
claimed by participants. ζ-scores and En (or 
equivalents) that are related to this assessment; 

3. Assessment of repeatability. Some methods that are 
presented as “graphical” in [3], are related to this 
assessment. 

These 3 types of assessment are totally different in nature: 
assessing a bias has something to do with assessing a mean value, 
while assessing uncertainties or repeatability has something to do 
with assessing a standard deviation. Consequently, totally 
different studies need to be conducted to address these issues. 
The scope of this study was limited to the assessment of biases. 
Further studies are needed for the other types of evaluation. 

Moreover, in the case of the assessment of the bias, both the 
assigned value and the maximum acceptable deviation can be 
determined by several means. [3] provides an extensive 
discussion concerning advantages and disadvantages of several 
of them. We decided to limit our study to the use of z-scores 
computed from the results of participants for the following 
reasons: 

1. z-scores (or equivalents) are the most used in practice 
(in many cases, other methods cannot be applied for 
technical or practical reasons); 

2. When the assigned value and/or acceptable deviation 
are externally determined, several additional 
parameters (typically, the difference between the 
assigned value and the “true” average value of results, 
and the difference between the acceptable deviation 
and the actual scatter of test results of participants) 
need to be considered. On the other hand, no effect 
of estimation of these parameters from the test results 
of participants happens, what lowers the added value 
of the use of the Monte-Carlo method, because it is 
precisely on this point that the use of this method 
makes sense. 
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[2], [3] and [4] define limits for computing the alerts with 
regard to z-scores, corresponding to theoretical risks of 5 % and 
0.3 %.  

Note that [2] deals with ILC to assess test methods. [3] deals 
with ILC for PT of labs. [4] is the reference for accreditation of 
PT providers. Consequently, even if the theoretical risks in all of 
them are same, their goal is different, in accordance with the aim 
of the standards: 

3. Limits in [2] are intended to assure the reliability of 
the assessment; 

4. Limits in [3] and [4] are for proficiency checking of 
participants.  

[2] is referred here because it is the “historical one” and it is 
still widely used by PT providers, even if [3] is obviously better 
adapted to proficiency testing of labs. 

These risks are of α-type (risk to trigger a warning that should 
not). Another risk actually occurs, usually called β-type (risk of 
not triggering a warning when it should). However, even if this 
question is of main importance, this β-type risk is quite hard to 
compute, and for this reason, is almost always just ignored, 
including in the reference standards [2] and [3]. Everybody 
knows that an enough number of participants is necessary to 
ensure the efficiency of the PT, but there is no clear consensus 
of what that “enough number” should be. On the other hand, 
test methods for which there are very few potential participants 
to a PT are quite numerous. There is then no opportunity for 
these laboratories to get the advantages of a participation to a 
PT. This paper proposes to overcome the difficulty of 
computing the β-risk by using the Monte-Carlo method and to 
provide a beginning of answer to the question: does it make sense 
or not to organise PTs with 5 or 8 or 12 participants, especially 
when the number of potential participants is quite low? 

To do so, the following issues are dealt with: 
1. How α-type and β-type risks can be computed and what 

hypotheses to do it were taken into account in the 
present study; 

2. What are the principles of the Monte-Carlo method, in 
which conditions it can be used and how it was 
implemented in the present study; 

3. What is the impact of the use of robust statistics that are 
usually used to avoid the deleterious impact of outlying 
results on the so-called assigned values; 

4. What is the impact of the number of test results by each 
participant, with regard to interlaboratory and 
repeatability standard deviations. 

2. DESIGN OF EXPERIMENTS 

2.1. List of symbols  

 The symbols used in this article are listed in Table 1. 

2.2. Calculation of α-type and β-type risks  

Computing α-type and β-type risks requests to define 
underlying alternate hypotheses usually designated as H0 and H1. 
α is the probability to reject the H0 hypothesis while it is actually 
true and β is the probability to reject the H1 hypothesis while it 
is actually true, as shown in Table 2. 

The issue of α-type and β-type risks have been extensively 
discussed for a very long time because they address many 
practical decision problems, notably the assessment of 
conformity of products to specifications, see for example 
ISO 3951-1 [5]. In all cases: 

1. α and β-risks decrease when the available number of test 
results increases; 

2. For a given number of test results, α-risk increases when 
β-risk decreases, and vice-versa. 

In the context of PT organisation, the H0 hypothesis can be 
quite obviously defined as “The results of the participant belong 
to the general population of expected results”. In the same way, 
H1 can be defined as “The results of the participant belong to a 
population other than the one of the expected results”. 

It is needed then to define how conclusions about H0 and H1 
shall be carried out. The decision rules described in the reference 
standards [2] and [3], i.e. the calculations of z-scores obviously 
apply to H0. On the contrary, the distribution of H1 is not known 
(other populations of results than the expected one can 

Table 1. List of symbols. 

Symbol Designation 

B Bias of the lab in the model of ISO 5725-1 

D and D% 
Participant’s difference with assigned value, absolute or in %, 

as defined in ISO 13528 

e Random error in the model of ISO 5725-1 

En 
Participant’s score used to assess its uncertainties, as defined 

in ISO 13528 

m General mean value in the model of ISO 5725-1 

Nr Number of test results per participant 

Np Number of participants 

Ns Number of samples distributed to each participant 

s* spt computed with a robust algorithm (see ISO 13528) 

spt Estimate of σpt computed from the data of the PT 

xi Result of participant “i” 

Xpt 
Central value or assigned value, that is used as reference value 

for the PT 

z 
Normalised participant’s score used to assess its bias, as 

defined in ISO 13528, see Equation (2) 

ztrue 
z-score that would be attributed to a participant if Xpt and σpt 

were exactly known 

zcalc 
z-score attributed to a participant, computed with Xpt and σpt 

determined from the test results of the PT 

α Probability to trigger a false alert for a participant 

β 
Probability not to trigger an alert for a participant when it 

should 

ζ-score 
Normalised participant’s score used to assess its uncertainties, 

as defined in ISO 13528 

λ 
Parameter as defined in Equation (4) encompassing effects of 

σrPT, σiL and Nr on the efficiency of the PT scheme 

σBL Standard deviation of the biases of the participating labs 

σH Standard deviation representing the homogeneity of samples 

σiL 

Standard deviation due to internal scatter of the laboratory 
results other than repeatability (differences between 

operators, machines of the lab, variations of environmental 
conditions within the lab along the time) 

σpt Standard deviation assigned for the PT 

σr Standard deviation of repeatability, as defined in ISO 5725-1 

σrPT Standard deviation of sets of results of participants 

σR Standard deviation of reproducibility 

Table 2. α- and β-risks with regard to H0 and H1 hypotheses. 

 H0 is true H1 is true 

H0 is accepted 
Right decision  

(p = 1 - α) 
Wrong decision  

(p = β) 

H1 is accepted 
Wrong decision  

(p = α) 
Right decision  

(p = 1 - β) 
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practically be very different ones, including gross errors, different 
types of deviations to the method, etc. …). One way to solve this 
problem is to construct “power curves” in function of 
parameters of the problem, and especially the number of results 
and the distance to H0. This principle was used to build up the 
design of experiments for this study.  

In details: 
1. We considered that the α-risk has occurred when 

|𝑧calc| > 3 and |𝑧true| < 2 (as recommended in [2] and 

[3]), and that the β-risk has occurred when |𝑧calc| < 2 

and |𝑧true| > 3; 
2. We computed these α and β-risks on populations of test 

results without any true outlier, i.e. to a whole Gaussian 
population of expected results. This implicitly includes 
5 % of corresponding z-scores outside the [-2;+2] 
interval and 0.3 % outside the [-3;+3] interval; 

3. We also computed the α and β-risks on populations of 
test results including one true outlier with various z 
values from 3.5 to 10. These computations of α and β-
risks were carried out separately for the main population 
and for the outlier, enabling to check the impact of the 
outlier on both categories of participant results. 

It should be kept in mind that the computed β-risks fully 
depend on the definition of H1 (see here upper) and that other 
ways to define H1 would also make sense, leading to other 
meaningful values of β. 

To deal with the upper, we have built up a design of 
experiments pursuing the following goals: 

1. Impact of the number of participants; 
2. Principles of the Monte-Carlo method; 
3. Impact of the type of statistics used to compute the 

so-called assigned values; 
4. Impact of the number of repetitions by each 

participant, with regard to interlaboratory and 
repeatability standard deviations. 

Each of these issues are developed here after. 

2.3. Impact of the number of participants  

[1] recommends that at least 12 participants are present and 
[2] recommends not to use robust statistics when the number of 
participants is less than 18. On the other hand, our computations 
showed that α and β-risks do not significantly change when the 
number of participants goes over 30. We then did not investigate 
higher values and decided to compute the α and β-risks for a 
number of participants varying from 5 to 30. This enabled us to 
investigate areas that are not recommended by the standards and 
compare them to recommended ones. 

2.4. Principles of the Monte-Carlo method  

The Monte-Carlo methods are a large category of algorithms 
that use random numerical realisations of a given model. They 
are often used to solve mathematical or physical problems, 
difficult or impossible to solve by other methods. For a survey 
of the history and applications of the Monte-Carlo methods, see 
for example [6]. 

In our problem, using the Monte-Carlo methods enables us 
to create series of “true values” of test results that cannot be 
known in real life. In practice, we always know whether H0 and 
H1 are accepted or not (i.e. whether an alert was sent to the 
participant or not), but we can never know whether H0 and H1 
are actually true or not. Using Monte-Carlo methods enables us 
to control at the same time for each series of random results 
whether H0 and H1 are accepted or not and whether H0 and H1 

are true or not. Having this whole information is necessary to 
compute both α- and β-risks. 

However, using Monte-Carlo methods requests to use a 
model that reasonably fits the situations encountered in the real 
world. In this study, we used the model of ISO 5725-1 [7] widely 
used to cope with problems of precision of test results: 

𝑦 = 𝑚 + 𝐵 + 𝑒 , (1) 

where 𝑚 is the general mean value, 𝐵 is the bias of the lab and/or 

the method, and 𝑒 is the random error. 

In this model, we used 𝑚 = 0, a Gaussian distribution with 0 

as mean value and 1 as standard deviation for 𝐵 and another 

Gaussian distribution with 0 as mean value and a varying 𝜎r as 

standard deviation for 𝑒 (see at 2.6 a discussion about what 𝜎r 
really represents in practice, with regard to the design of the PT 
scheme as decided by the PT provider). 

Using the Monte-Carlo methods also requests to use random 
input values. When several random values are necessary to 
produce one Monte-Carlo result and when correlations between 
them apply in real life, these correlations must be incorporated 
in the input values of the computations. That can be a bit difficult 
to be done properly. In our case, the Monte-Carlo results are z-

scores, and 𝑁r x 𝑁p random values (𝑁r: number of test results 

per participants and 𝑁p: number of participants) are needed to 

compute them. We can reasonably rule out the existence of any 
correlation, assuming that there is no correlation between the 
results of the different participants and between the results of a 
same participant. As a matter of fact, [3] requests PT providers 
to care about that (no collusion between participants), because it 
is a condition to ensure the validity of the statistical treatment. 

To assure the validity of the conclusions, the random series 
need to be numerous enough, depending on many factors. In our 
study, we computed series of 500 000 to 4 000 000 z-scores for 
each situation (i.e. for each combination of number of 

participants, number of test results per participant and 𝜎rPT 𝜎𝑖L⁄  
ratio). Each of them was divided in 40 sub-groups enabling us to 
check how repeatable were the computed α and β within the 40 
sub-groups and compute a related interval of confidence (IC). 
This IC always happened to be always less than ± 2 % (with 
enlarging coefficient k = 2) and in all cases significantly lower 
than of the computed α and β. 

2.5. Impact of the type of statistics used to compute the so-called 
assigned values  

Results with gross errors often occur during the organisation 
of PT. They are usually caused by typing errors, by 
misunderstanding of instructions for participation or by using 
wrong units. In most cases, gross errors are due to necessary 
deviations to routine procedures of the labs when they 
participate to a PT. Typically, typing errors usually never occur 
in real life because data transfer is nowadays never performed 
manually, contrarily to the cases of participations to PT. 

However, gross errors are a big problem for the statistical data 
processing, because they strongly impact the estimation of 
statistical parameters, making them irrelevant. In particular, they 
strongly increase the computed standard deviations, and hence, 
the β-risk. On the other hand, just ignoring the suspicious results 
might lead to underestimate the standard deviations of reference, 
increasing then the α-risk. 

To face this problem, [2] and [3] recommend to detect outliers 
and/or use so-called robust statistics. These robust statistics 
generally consist in replacing outlying results by softened virtual 
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ones, using algorithms specifically designed for that. Full 
information about this can be found in particular in Annex C of 
[3] and in [8]. These robust methods tend to produce mean 
values and standard deviations resisting to a certain proportion 
of outliers (called breaking point) but also to decrease the speed 
of convergence of the estimates towards their central values. 
Annex D of [3] provides a comparison of the breaking points 
and speeds of convergence of the different algorithms that it 
proposes. 

Because of the decrease of the speed of convergence in 
estimations of mean values and standard deviations, [3] and [9] 
recommend not to use robust statistics for a low number of 
participants. However, [10] and [11] went quite deeper in 
studying the issue and both showed that using robust statistics 
considerably improve the estimation of central value and scatter 
of the distribution in presence of outliers and consequently 
improve the assessment of the performance of PT with low 
number of participants. They both compared the different robust 
methods usually used but they both conclude that their relative 
efficiency depends on the type and proportion of outlying 
results. 

On our own, as PT provider, our line of action has always 
been to use robust statistics, even for low number of participants, 
preferring running the risk of a day-to-day slightly lower 
efficiency of assessment than a risk of completely misleading 
one, even sporadically. 

For the sake of this study (which is not to compare the 
efficiency of the different available robust methods), we chose to 
compute α and β-risks without robust statistics and with the so-
called A algorithm described in [2] and [3], which is the most 
widely used by PT providers. This enables us to check the impact 
of using robust statistics or not without increasing to much the 
volume of needed calculations. 

In order to check the impact of outliers, we produced series 
of test results without outliers and with one outlier which true z-

score varies from 𝑧 = 3.5 to 𝑧 = 10. It follows that the 
proportion of outliers depends on the number of participants 

𝑁p, from 20 % for 𝑁p = 5 to 3.3 % for 𝑁p = 30. This option 

does not necessarily represent faithfully what happens in practice 
(see [10] and [11] for that), but we chose it because: 

1. It does not request any modelling of outlying; 
2. And it provides information about the impact of outliers 

easier to handle. 

2.6. Impact of the number of repetitions by each participant, with 
regard to interlaboratory and repeatability standard 
deviations  

In almost all cases, PT providers use z-scores or equivalents 
to assess the performance of the participants. According to [3] 
and [4], z-scores can be computed according to the equation (2): 

𝑧 =
𝑥𝑖 − 𝑋pt

𝜎pt

 , (2) 

where 𝑥𝑖 is the result of the participant 𝑖, 
𝑋pt is the central value 

and 𝜎pt is the standard deviation assigned for the PT. 

The performance is regarded as satisfactory when 𝑧 ∈
[−2; +2] and not satisfactory when  𝑧 ∉ ] − 3; +3[.  

Note that these limits are completely conventional. They 
implicitly refer to the idea that the probabilities for these events 
to occur are respectively 95 % and 0.3 %, and other choices 
would also make sense. Consequently, the theoretical α-risk is 

0.3 %. In other words, the probability to decide that the results 
are unsatisfactory, while in fact they do, belong to the main 
population is 0.3 %.  

In fact, this would be true if 𝜎pt had exactly represented 𝜎BL, 

standard deviation of the biases of all the participating 

laboratories, what is never true. In most cases, 𝜎pt is computed 

as 𝑠pt (or 𝑠* when a robust algorithm is used), defined in [2] and 

[3] as the standard deviation of the results of all participants. 

Then, in practice, 𝜎pt can be computed with the equation (3): 

𝜎pt
2 = 𝜎BL

2 + 𝜎iL
2 +

𝜎r
2

𝑁r

+
𝜎H

2

𝑁s

 , (3) 

where 𝜎BL is the standard deviation of the biases of the 
participating laboratories, 

𝜎iL is the standard deviation due to internal scatter of the 
laboratory results other than repeatability (differences between 
operators, machines of the lab, variations of environmental 
conditions within the lab along the time), 

𝜎r is the repeatability standard deviation,  

𝑁r is the number of test results per lab,  

𝜎H is the standard deviation representing the homogeneity of 
samples and 

𝑁s is the number of samples provided to each lab. 
In order to ensure the efficiency of the PT, PT organisers 

normally request the participants to produce their results in 
repeatability conditions, as defined in [2]. That is to say, the 
results provided by the participant are normally coming from a 
same operator using the same equipment, and tests being 
performed in a short period of time. However, in its day to day 
life, the laboratory usually produces test results from several 
operators, using different equipment in testing conditions that 
vary along the time. Consequently, the mean value of the test 
results that the participant delivers to the PT organiser randomly 
distributes around its yearly global mean value, with a standard 

deviation 𝜎iL representing the scatter due to the effects of using 
different operators, different equipment, and different test 
conditions along the time. 

This standard deviation 𝜎iL is usually unknown because 
computing it is quite complicated. Indeed, to evaluate it properly, 
testing plans need to cover several operators, various equipment, 
and a long period of time. However, it is possible to compute it 
for example when PT are organised with a high frequency (for 
example once a month) or when the laboratory has put in place 
a surveillance of its test results along the time by using a control 
chart, provided that the corresponding results represent all the 
test conditions along the time. We did not consider it here 

because it hardly happens. When relevant (i.e. when 𝜎iL has 
technical reasons to be important), PT organisers could request 
participants to produce several series of results corresponding to 
different operators, equipment and testing conditions. ISO 5725-
3 [12] describes efficient methods to determine intermediate 
fidelity and would be useful to perform that. In such cases, the 

term 𝜎iL
2  should then be transformed into 𝜎iL

2 𝑁iL⁄  (where 𝑁iL is 
the number of corresponding repetitions or the relevant number 
of degrees of freedom when “unbalanced testing schemes” are 
used). 

On the other hand, the test results provided by the participant 
are made from a limited number of repetitions. Because of that, 
and when the participant actually produces its results in 
repeatability conditions, the mean value of the test results that 
the participant delivers to the PT organiser randomly distributes 
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around its mean value, with a standard deviation 𝜎r representing 
the repeatability. This effect is however softened by the number 
of repetitions, in accordance of the statistical law that applies for 
the estimation of a mean value, which justifies the contribution 

𝜎r
2 𝑁r⁄ . 

Except the cases where all participants perform their tests on 
the same samples (what can be done only if tests are not 
destructive and what generates practical difficulties of 
organisation), the samples on which the participants perform 
their tests can never be all exactly identical. Consequently, the 
mean value of the test results that the participant delivers to the 
PT organiser randomly distributes around its mean value, with a 

standard deviation 𝜎H representing the lack of homogeneity of 
distributed samples. This effect is however softened by the 
number of samples that are distributed to the participants. In the 

same way than for repeatability, the contribution of it is 𝜎H
2 𝑁s⁄ . 

In addition to all of this, we have to stress out that all this is 
valid only if all the here upper described variances can be 
regarded as independent. If some correlations were to exist 
between those factors, then the corresponding covariances 
should be taken into account. This is obviously not the case in 
here: scatters due to interlaboratory effects, intra-laboratory 
effects, repeatability effects and homogeneity effects have no 
reasons at all to have common technical roots.  

Equation (3) is true only when we consider the true standard 
deviations of the whole populations. In practice, these σ true 
values are estimated as s values from a limited number of results, 
what implies to deal with the number of degrees of freedom that 

are different from 𝑁r and 𝑁s. The use of the ANOVA (analysis 
of variances) methods is then needed to perform properly the 
computations. 

As a conclusion of all of the upper, the test results that a given 
lab sends to the PT provider are not only governed by their bias, 
but also by which combination of equipment – operator – testing 
conditions that were used to perform the tests for PT, by the 
repeatability of tests and by chance with regard to 
inhomogeneities of samples. 

In any cases, 𝜎pt is then always greater than 𝜎BL, what leads 

to α-risk lower than the expected 0.3 %, but also and 
consequently to increased β-risk. 

In some cases, for example when 𝜎r ≫ 𝜎BL and only one test 
result is sent by each lab, the PT can become completely 
inefficient (see 3.4 here after). 

In practice, in most cases: 

1. 𝜎iL cannot be computed because each lab is requested to 
provide results obtained by only one operator, one test 
equipment set, performed in a short period of time (i.e. 
in repeatability conditions). Consequently, when each lab 
provides several test results, their computed standard 

deviation is 𝑠r and does not include any contribution of 

𝜎iL; 
2. Labs are requested to perform a few tests on a same 

sample or one test on each of a few distributed samples. 

In these conditions, 𝜎r and 𝜎H cannot be computed 
separately. 

Consequently, in most cases only two standard deviations are 
governing the assessment: 

1. An interlaboratory standard deviation that we call 𝜎L in 

our study, and that includes 𝜎BL, 𝜎iL and, when only one 

sample is provided, 𝜎H; 

2. A repetition standard deviation that we call 𝜎rPT in our 

study, and that includes 𝜎r and 𝜎H when several samples 
are provided and one test per sample is performed. 

This 𝜎rPT, can be determined from Equation (3), with respect 
to the design of the PT as defined by the PT provider (how many 
samples per participant, how many test results per sample, etc). 

When only one test result from only one sample is provided 

per each participant (what in fact happens quite often), 𝜎pt is 

then the reproducibility standard deviation 𝜎R. 
Note that we see here that PT providers could strongly 

improve their scheme and use ANOVA to separate all these 
standard deviations, but this goes far beyond the scope of this 
study and is not dealt with in this article. 

In our study, we computed α and β-risks for 𝜎rPT 𝜎L⁄  from 

0.1 to 3 (corresponding to 𝜎rPT 𝜎R⁄  from 0.1 to 0.95 that 

encompass the ratios actually encountered in practice) and for 𝑁r 
(number of test results per lab) from 1 to up to 48. This latter 
number of repetitions is obviously quite too high to be 
encountered in practice. However, including it in our scheme 
made possible to investigate whether there could be of some 
benefit in some cases. 

3. RESULTS AND DISCUSSIONS 

3.1. General 

All data of results is presented in figures. Detailed results are 
available in [13] (see particularly the annexes). 

3.2. Pertinence of a ratio relating repeatability, interlaboratory 
standard deviation and number of test results per 
participant 

To deal with the issue exposed at chapter 2.6, we defined a 
parameter λ as follows: 

𝜆 =
𝜎rPT

𝜎iL × √𝑁r

 (4) 

where 𝜎rPT is the standard deviation of sets of results of 
participants, 

𝜎iL is interlaboratory standard deviation, 

and 𝑁r is the number of test results per lab. 
This parameter reflects the idea that the test results of each 

participant follow a Gaussian law which mean value is the bias 

and which standard deviation is 𝜎rPT √𝑁r⁄ . 

We found out that this parameter is valid to describe the full 
effect described in chapter 2.6, see Figure 1. 

Figure 1 clearly shows that, for each number of participants, 

the 𝜎rPT 𝜎iL⁄  curves are in extension of each other, so that a 
merge of these curves make sense, as shown in Figure 2. 

3.3. Impact of the use of robust statistics  

As seen in 2.5, [2] and [3] recommend not to use robust 
statistics when the number of participants is low because of 
lower efficiency while [10] and [11] did not confirm that this 
recommendation is useful.  

Our computations confirmed that: 
1. The α-risk is slightly increased when using robust 

statistics, what is consistent with the expected loss of 
efficiency in the determination of assigned values; 

2. The β-risk is significantly reduced when using robust 
statistics, what is consistent with the better robustness of 
the assigned values. 

In details, three cases were considered: 
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1. Comparison of risks for participants when no outlier is 
artificially introduced. In that case, occurrences of α-risk 
only relate to participants which are located at the tails of 
the Gaussian distribution, that is to say which bias is high 
by chance, without any technical reason for that; 

2. Comparison of risks for not outlying participants when 
one outlier with a fixed bias is introduced in the 
population of participants. In that case, occurrences of α-
risk also relate to participants which are located at the 
tails of the Gaussian distribution of the bias of 
participants; 

3. Comparison of β-risks for an artificially introduced 
outlier which bias corresponds to a known z-score. By 
definition, the α-risk does not exist in that case (there is 
no risk to declare it as outlier while it is not). 

Figure 3 shows the results of comparisons of risks when no 
introduced outlier is present. We observed that α-risk slightly 
increases while β-risk slightly decreases. However, both 
evolutions are not significant compared to the impact of the 

other factors (𝜆 and 𝑁p). 

Figure 4 shows the results of comparisons of risks for main 
participants when one introduced outlier is present. We observed 
that α-risk slightly increases while the β-risk significant decreases 

when the λ factor is adverse (i.e. when 𝜆 > 1). In particular, we 

can see that even with 30 participants and 𝜆 > 1, not robust 
statistics completely fail to detect participants with z > 3 (β-risk 
> 90 %). 

Figure 5 shows the results of comparisons of risks for an 
outlier. We observed that AlgoA is significantly more efficient to 
detect outliers even when PT conditions are adverse (i.e. when 

𝜆 > 1 or when 𝑁p < 13). 

3.4. Impact of λ ratio  

Figure 2 clearly shows that both α and β-risks decrease with 𝜆 

until a certain value of 𝜆 that we evaluated to be 0.17, whatever 

the number of participants. When the critical value 𝜆 = 0.17 is 
reached, no further improvement of both α-risk and β-risk occur, 
whatever the number of repetitions. This can be clearly observed 

in Figure 1, where all results for 𝜎rPT 𝜎iL⁄ = 0.1  are grouped in 
clusters (in orange on the figure). 

 

Figure 1. α- and β-risks for participants without outlier in function of λ and number of participants (from left to right, p = 5 - 6 - 8 - 10 - 13 - 16 - 20 - 25 - 30). 

 

Figure 2. α- and β-risks for participants without outlier in function of the number of participants (L is the number of participants). 
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This also occurs for other cases (i.e. when an outlier is 
present) as shown in Table 3. 

PT providers control neither 𝜎r nor 𝜎iL. These standard 
deviations only depend on the test method. But the PT providers 

do control 𝑁r (the number of test results per lab) and hence do 

control 𝜆 (increasing 𝑁r decreases 𝜆, see (4)). They should use 

their historical data or literature to determine, 𝜎rPT 𝜎R⁄  for each 
test method proposed for PT and they should use Table 3 to 

determine the minimum 𝑁r values to optimize the PT programs. 

However, practical reasons may limit 𝑁r (costs or impossibilities 
to produce or to transport the samples, costs or impossibilities 
for laboratories to perform a large number of tests). 

As a conclusion, when 𝑁r is chosen equal or superior to the 
value of Table 4, the best α and β-risks can be reached, according 
to the number of participants. 

Further experiments are requested to understand the 

undergrounds of this 𝜆 = 0.17 constant. In particular, its 
variations in accordance with the definitions of H0 and H1 should 
be studied (see 2.1). 

3.5. Discussion about α-risks  

The theoretical α-risk with our definition of H0 is 0.0027 / 

0.95 = 0.28 % (probability that |𝑧calc| > 3 while |𝑧true| < 2). 
This risk is reduced by the impact of the repeatability, especially 

when the 𝜆 value is high (see 2.6). When the PT conditions are 

bad (i.e. 𝜆 > 1 or 𝑁p < 13) the use of robust algorithms tends 

to increase α-risk while the use of mean value and standard 
deviation tend to decrease α-risk. 

On the other hand, the comparison of Figure 3 and Figure 4 
shows that the presence of outliers tends to decrease α-risk. 

Indeed, in those cases the 𝜎pt standard deviation is strongly over 

estimated, what significantly decreases the z-scores of all 
participants, including those of the opposite side of the 
distribution of results for which this effect is softened by the 
offset of the assigned central value. 

In any cases, even in very bad PT conditions (i.e. 𝜆 = 3 

and/or 𝑁p = 5) α-risk always remains very low (less than 0.7 %), 

see Figure 3.  
 

 

Figure 3. Comparison of α- and β-risks obtained with Algorithm A and with not robust statistics (m + s), for participants without any outlier in function of λ (p 
is the number of participants). 

 

Figure 4. Comparison of α- and β-risks obtained with Algorithm A and with not robust statistics (m and s), for main participants when an outlier with z = 10 is 
present, in function of λ (p is the number of participants). 
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3.6. Discussion about β-risks  

Whatever the situation (with or without presence of an 
outlier), β-risk is mainly governed by: 

1. the 𝜆 ratio  
2. and the number of participants. 

Without any outlier, using 𝜆 ≤ 0.3 and 𝑁p ≥ 13 is needed to 

get a β-risk less than 20 %, see Figure 3. 
When an outlier whose z = 10 is present: 
1. The β-risk for the main population is very close to 0 in 

almost all cases for which 𝜆 ≤ 0.9, whatever 𝑁p, see 

Figure 4; 

2. The β-risk for the outlier is under control as soon as 𝜆 ≤
0.3 whatever the number of participants, see Figure 5 

Figure 6 and Figure 7 show the β-risks respectively for the 
main participants and to the outlier in function of the outlier’s z-
score. 

It is reminded that 0.3 % of the participants of the main 

population get z-scores 𝑧 < −3 or 𝑧 > +3. However, the H0 
hypothesis considers them as outliers, so that the H1 hypothesis 
can be checked, i.e. a β-risk can be computed. 

These figures show that 6 participants are enough to detect a 
strongly outlying participant (whose z-score is 10), while 30 
participants are not enough to detect a slightly outlying 

 

Figure 5. β-risks obtained with Algorithm A and with not robust statistics (m+s), for an outlier with z=10, in function of λ 

 

Figure 6. β-risks obtained with Algorithm A and λ=0.17 for the main participants when an outlier is present, in function of the outlier’s z-score 

 

Figure 7. β-risks obtained with Algorithm A and λ=0.17 for an outlier in function of its z-score. 
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participant (whose z-score is 3.5) even if PT conditions are 
optimal (𝜆 = 0.17 and 𝑁p = 30). 

4. CONCLUSIONS 

This study demonstrates that: 

1. The ratio 𝜆 = 𝜎r (𝜎iL × √𝑁r)⁄  is of main importance to 

control the efficiency of a PT scheme, even more than 
the number of participants. The PT providers should 
then care Nr, number of test results per participant that 
they request; 

2. Even in adverse conditions, the α-risk is always very low 
(less than 0.7 %); 

3. Robust algorithms improve the efficiency of the PT 
program (i.e. β-risk) at a slight expense on α-risk (which 
always remain very low). This comes from a significantly 
better estimation of the standard deviation of reference 
when an outlier is present among the participants; 

4. A number of 6 participants is large enough to detect a 
strongly outlying participant provided that good PT 
conditions (i.e. low value of 𝜆) are present; 

5. PT with a low number of participants is (almost) always 
better than no PT at all. 

Reference standards [2] and [3] recommend not to organise 
an ILC with less than 12 participants. This makes sense for [2], 
which goal is to determine the performance of a test method. It 
makes less sense for [3], which goal is to check the performance 

of a lab. Obviously, when no PT is organised, β-risk is 100%: any 
lab having a problem can never at all realise it! Consequently, for 
test methods that are performed by a little number of labs, it is 
obviously better to organise PT with 6 participants than nothing. 
In those cases, the PT provider should specially care the 𝑁r it 
requests, to ensure a proper 𝜆 value and consequently assure an 
efficiency as good as possible. 
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Table 3. Lower λ limits under which α and β-risks decrease anymore 
according to the number of participants (α and β in %, computed with Algo 
A). 

  No outlier 
Main participant 
when one outlier 

is present 
Outlier 

Np λ α (%) β (%) α (%) β (%) α (%) β (%) 

5 0.17 0.5 80 0.55 90 - 22 

6 0.17 0.45 65 0.53 80 - 2 

8 0.17 0.30 40 0.44 65 - 0 

10 0.17 0.2 23 0.38 59 - 0 

13 0.17 0.12 12 0.32 50 - 0 

16 0.17 0.10 10 0.25 45 - 0 

20 0.17 0.05 5 0.22 40 - 0 

25 0.17 0.03 3 0.18 38 - 0 

30 0.17 0.01 1 0.16 34 - 0 

Table 4. Optimal number of repetitions for PTs, according to the σr/σiL and 
σr/σR ratios. 

σr/σiL σr/σR Nr 

≤ 0.17 ≤ 0.17 1 

0.3 0.29 3 

0.42 0.39 6 

0.59 0.51 12 

1 0.71 35 

3 0.95 310 
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