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1. INTRODUCTION 

The measurement of in-house human activity at a lowest cost 
is a great way to improve the well-being as concluded by several 
studies focused on the measurement of walking activity in order 
to predict physical diseases [1]. In a previous study [2], we 
pointed out the necessity to use low cost and low consumption 
non-intrusive sensors to perform such measurement and 
proposed a solution based on a Passive Infra Red (PIR) sensor 
and on a machine learning (ML) extraction of walking speed. 

Other solutions are based on capacitive sensors or on the 
electrical potential [3]. We discard the first ones due to their small 
range (ten centimeters). The latter have been used in a context 
close to our concerns. 

In [4] Zeng proposed a solution based on electrostatic 
induction that looks promising for low cost and low 
consumption measurement of walking velocity. The electrostatic 
sensors are justified by several reasons: they can be miniaturized 
due to the small number of components. They can be also easily 
integrated into indoor objects such as skirting board for example 
and are not subject to the constraints of optical sensors such as 

occlusions and lighting. Moreover, they are potentially 
inexpensive passive sensors, and they consume little energy. In 
[5], Kurita also demonstrated that such sensors can be used to 
distinguish some gestures and some type of steps [6], which 
would allow us to perform human recognition. The electrostatic 
sensor created by Kurita was also used in combination with a ML 
algorithm to identify individual characteristic [7]. This kind of 
sensor is a good candidate for the measurement of walking 
velocity but includes a component that reduce the possibility to 
use it as a low-cost sensor. 

In [8], the authors show that it’s possible to obtain temporal 
gait parameters with the electrostatic field sensing technology; 
however, this study doesn’t include the measurement of walking 
speed. In [9] and [10] studies use this kind of sensor but they 
focus on localization and identification. Actually, the 
technologies used to measure the walking speed do not include 
electrostatic sensors [11]. 

The solution we decided to explore uses a low-cost 
electrostatic sensor to perform an accurate contactless 
measurement of walking velocity. As this cost reduction is linked 
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to a sensitivity reduction, we use a ML algorithm to improve the 
accuracy of the sensor. 

The learning phase is performed by the way of depth sensor 
the same way than in our previous study [2]. 

This paper first presents the electrostatic sensor and the 
experiment defined to perform the machine learning phase and 
the characterization. Then the data analysis methods are 
presented. The results with a direct computational method, and 
with a machine learning approach are presented. 

2. EXPERIENCE PRESENTATION 

Our goal is to measure an individual's walking speed using a 
non-intrusive sensor and to ensure that the results obtained are 
satisfactory compared to what we could achieve with another 
non-intrusive sensor. That's why we decided to present the 
results obtained with an electrostatic sensor, but also to compare 
them with the results obtained with one of the other sensors 
(PIR). 

2.1. Electrostatic sensor 

The electrostatic induction sensor proposed by Kurita in [6] 
requires a resistor of 3 TΩ that makes the sensor incompatible 
with the low-cost constraint. The electric potential sensor (EPS) 
we developed is specifically sized for indoor human motion 
capture: human activity frequencies are between 0 and 20 Hz 
[12]. 

They consist of an electrode whose received potential is 
filtered and amplified (see Figure 1).  

The electrical diagram is shown in Figure 2. High-pass filters 
with a low cut-off frequency are used to cut the DC components 
of the signal, while low-pass filters are used to reject components 
that do not correspond to human movements, in particular the 
50 Hz noise from the AC outlets. 

This architecture makes it possible to amplify variations in 
electrical potential. When someone walks near the sensor, an 
induced current is generated on the electrode [13]. Indeed, the 
human body is charged with static electricity due to the creation 
of friction between the body and clothing; moreover, friction, 
contact and separation between the human foot and ground 
during walking also charges the human body electric field around 
the human body with the foot movement during walking [4]. 

2.2. Measurement system 

The measurement system is made of 4 measuring boards 
facing each other in a corridor, each board including a PIR and 
an EPS. The scene is observed by a depth camera (RealSense 
L515) which makes it possible to obtain a reference of the 
experiments carried out by the detection of the skeleton of 
people moving (See Figure 3). 

During an experiment, a person walks in the corridor at a 
constant speed, which varies from slow to fast depending on the 
experiments. The signals measured by the 4 PIRs and the 4 EPS 
(see Figure 4 and Figure 5), as well as the skeletons detected by 
the 3D camera are stored as a set that we will call an experiment 
sample.  

In order to evaluate our measurement system based on EPS 
sensors, we present in the following section two approaches: 
with ML and without ML, which we also compare with the 
results obtained with PIR sensors. The qualification of PIR 
sensors, and even more so that of EPS sensors, does not allow 
us to perform a type B estimation of the uncertainty of the 
walking speed. As a consequence, the uncertainty of our system 
will be estimated by a type A approach as defined in the GUM, 
and will take as reference the walking speed given by the 3D 
camera. 

 

Figure 1. Diagram of the different signal processing layers.  

 

Figure 2. Electrical Diagram of the EPS.  

 

Figure 3. Measurement system with the 4 measurement boards and the 
depth camera.  

 

Figure 4. Graph of data acquired by PIR and EPS for a slow walking speed.  

 

Figure 5. Graph of data acquired by PIR and EPS for a medium walking speed.  
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3. MEASUREMENT WITHOUT ML 

We used a dataset of 229 experiments, one experiment 
corresponding to a person walking straight down the centre of 
the corridor. They have a fixed length of 13 seconds with a 
sampling rate of 50 samples per second. 5 different persons of 
various ages and sizes took part to the experimentation. 

The reference speed is computed by a linear regression of the 
locations of the right hip and the left hip given by the depth 
camera. 

The speeds given by the PIR are computed as follow: each 
signal is interpreted as a wave packet and the moment of the 
middle of each wave packet is obtained with the maximum of 
energy of the Complex Morlet wavelet transform of the signal 
(Figure 6). A simple ratio between the time of flight and the 
distance between 2 measurement board gives the speed. The 
same process is used to compute the speed from the EPS (see 
Figure 7). 

The standard uncertainty is estimated by the standard 
deviation from the reference speed given by the camera on 
walking speed from 0.5 m s-1 to 2 m s-1. The estimated standard 
uncertainties are u = 0.284 m s-1 for the PIR sensor after the 
exclusion of abhorrent results, and u = 0.213 m s-1 for the EPS 
(no exclusion). 

4. ML-AUGMENTED MEASUREMENT 

4.1. Electrostatic sensor 

The hypothesis we want to test is: “an ML regression can 
reduce the uncertainty of the sensors”. To test this hypothesis, 
we started an exploration by the way of a manual 
hyperparameters optimization (see [14]) of a family of neural 
network models to optimise the sensor uncertainty. The models 
we explored are Convolutional Neural Networks (CNN) taking 
as input the 4 wavelet transforms computed from the signals 
issued from the 4 EPS as inputs. 

The tested models were classical feedforward models with the 
following hyperparameters:1 or 2 convolution layers each 
followed by a Maxpool 2 × 2 layer. Each convolution layer has 
either 8, 16, 32 or 64 filters 3 × 3. The model is ended with 1 or 
2 dense layers in addition to the last one. For all layers, the 
activation function is ReLu. The loss function is the mean square 
error, and the optimizer is the Adam optimizer. The 229 samples 
are split into train and validation groups respectively with 70 % 
and 30 % of samples. 

The best reproductible results were obtained with the same 
model for the PIR and for the EPS. This model, denoted 2-
layersNN, has 2 convolution layers, the first one with 32 filters, 
and the second one with 64 filters. The model has no additional 
dense layer (see Figure 8). 

The results obtained with the EPS network are more accurate 
than those obtained with the PIR sensor network. The obtained 
standard uncertainty is u = 0.13 m s-1 for the EPS and 
u = 0.17 m s-1 for the PIR. 

In order to circumvent the wavelet transform we tested 
recurrent networks specialized in time series such as LSTM and 
TCN. However, none of them performed well enough, as shown 
in the Table 1. These low results can be explained by the fact that 
recurrent networks, even if they are adapted to time series like 
the one produced by the sensors of this study, implement a 
forgetting behavior that is more dedicated to a continuous 
analyses of a signal.  

Another architecture that cannot be avoided in such study is 
the ResNet architecture [15]. It allows to have deeper models 
with higher expressivity. 

 

Figure 6. Morlet wavelet transform of EPS signal for a walking person.  

 

Figure 7. Morlet wavelet transform of PIR signal for a walking person.  

 

Figure 8. Hyperparameters of the CNN model giving the lowest reproductible 
uncertainty.  
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As for the 2-layersNN, the ResNet model takes the 4 wavelet 
transforms as input. With this architecture, it was able to obtain 
performances similar than that obtained with the two-
convolution model (2-Layers NN). 

Moreover, a dual-attention module [16] was added to the 
ResNet model before each pooling step; this attention module is 
a low complexity approach that associates both network channel 
level attention and spatial attention that relates here to spectro 
temporal information. This module allows the model to be 
focused on the areas holding the useful information, in our case, 
the area of the wavelet transform holding the signal energy (see 
Figure 9). 

This architecture improves the performance of the system for 
the PIR and gives also similar performances for the EPS as 
presented in Table 1. 

4.2. Sensor reduction 

In the previous parts, we observed an improvement of the 
speed gait accuracy by the use of a ML stage. This means that the 
signal shapes of sensors may hold more information than a 
simple time shift between the signals from 2 sensors. 

To test this hypothesis, we removed a pair of sensors to keep 
only 2 sensors facing each other (sensors 1 and 2 on Figure 3).  

The two-convolution model and the residual model with or 
without attention were tested (see Table 2).  

The sensor reduction induced a moderate degradation of the 
performances of the speed measurements based on the 2-layer 
NN. This is not the case for the ResNet based systems that keep 
their performances. 

These results show that the 2-Layer NN based speed gait 
measurement system loses information during the sensor 
reduction but, in the case of EPS, keeps enough data to give a 
measurement result with an uncertainty compatible with the 
target of this study. 

We analyse the trained model with the Grad-CAM tool to 
better understand it, and to know what features it relies on to 
perform the regression. Grad-CAM is a tool that allows you to 
understand what a model is based on to make its prediction, or 
on which part of an input image the model is positioned to give 
this result [17]. 

It clearly emerges that the model bases its regression on the 
contours of the wavelet transform and ignore the low frequencies 
- the bottom part of the wavelet transform - and the general 
shape of the signal – the highest energy area - see Figure 10. 

More surprising is the stability of the perfomances of the 
ResNet based systems during the sensor reduction process. This 
can be variously interpreted and needs a deeper analysis of the 
network’s trained models. 

 

Figure 9. ResNet architecture giving the lowest uncertainty.  

Table 1. Standard uncertainties: u in m s-1 (4 sensors). 

Algorithm PIR EPS 

Without ML 0.28 0.21 

2-Layers NN 0.17 0.13 

ResNet 0.18 0.13 

ResNet+Attention 0.15 0.12 

LSTM 0.43 0.43 

TCN 0.93 0.79 

Table 2. Standard uncertainties: u in m s-1 (2 sensors). 

Algorithm PIR EPS 

2-Layers NN 0.20 0.15 

ResNet 0.18 0.13 

ResNet+Attention 0.15 0.12 

    

 

Figure 10. A wavelet transform as one of the Grad-CAM input and the 
corresponding heatmap for the trained 2-Layer NN.  
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5. CONCLUSIONS 

The comparison between a measurement results given by the 
data processing and measurement results given by a Machine 
Learning regression shown that the signals issued from the 2 kind 
of sensors, PIR and EPS, hold information on walking speed that 
can be exploited by a neural network.  

A residual architecture ResNet in addition to an attention 
module gives significant performances. The two-layer model still 
performs very well, but this performance can strongly depend on 
the composition of our dataset and its simplicity. This is probably 
related to the number of convolution layers and the low number 
of samples. 

It also shown that EPS - Electric Potential Sensors are 
suitable for the in-house measurement of walking speed of the 
elderly. Indeed, their uncertainty is lower than the target of 
0.15 m s-1 known as the upper limit to detect a speed reduction 
related to an illness [18]. As for the PIR sensors, EPS consume 
very little energy, they are inexpensive, non-intrusive but have a 
better accuracy. They could therefore be used in several fields 
such as health or home monitoring. Actually, such sensors are 
included into similar studies related to human activity such as the 
notification of the presence of people in a place, the 
measurement of other gait parameters or the gesture recognition. 
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