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1. INTRODUCTION 

Even though industrial processes are increasing the usage of 
automation technology, the application of uncertainty methods 
is not so predominant as a quality parameter [1]-[3]. Despite its 
low industrial usage, measurement uncertainty estimation can be 
considered as a critical metrological assessment tool of the 
measurement system [4], [5]. 

Although type A evaluation results – uncertainty assessment 
method by statistical analysis of a series of observations, such as 
experimental standard deviation – are easier to obtain by 
comparing the results of an instrument with a reference, it is not 
always straightforward, considering that the algebraic 
relationships needed to plot some uncertainty chains are not 
always available. In addition, sometimes it is impractical to 
quantify some kinds of type B assessments, i.e., previous 

measurement data, expertise of the operator in that activity, 
specifications of manufacturer and data provided in calibration 
certificates and datasheets [6]. This realization makes some 
instrument designers rely on experimentally fitted curves rather 
than analytical models. However, the uncertainty derived from 
algebraic formulas can offer good insights into what can be done 
to improve the construction of a device. 

This is the case of artisanal beer brewing, where an 
experiment can take anywhere from a few hours to a few weeks 
[7] and several variables are involved. In this case, there is an 
instrument that significantly reduces manual quality control, 
eliminating many sources of uncertainty which would be 
evaluated as type B. To build the formulas associated with this 
instrument, it was necessary to investigate the uncertainty of its 
volume, which involves the analysis of a cylindrical segment. 

ABSTRACT 
The cylindrical segments, which have applications in novel tilt-based industrial hydrometers, are seldom studied analytically, unlike 
spheres, cylinders, and parallelepipeds. More specifically, the cylindrical segment has two means of being characterized: by measuring 
the radius, the middle height, and the cutting angle; and by measuring the radius and both the minimum and the maximum heights. In 
other words, the literature presents two different sets of algorithms for calculating the characteristics of the cylindrical segment. This 
study sheds light on one equation from the literature about the cylindrical segment that must be corrected. Next, the two measurement 
forms are compared, along with their impact on the uncertainty of the volume and barycenter of this solid. Routine applications depend 
on specific input uncertainties, measurements, and objectives. Still, for most cases, it turned out that measuring the minimum and 
maximum heights generally provides lower uncertainty values for the evaluated calculations instead of measuring the height of the 
cylinder’s axis and the angle, especially the centroids. 
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While it can be easy to find the characteristics of commonly 
used solids like spheres, cylinders and parallelepipeds, others are 
not so easy to discover. One of those is the cylindrical segment. 
Additionally, the characteristics of the cylindrical segment can be 
calculated by two different methods: Method 1, measurement of 
the radius and length of the biggest and shortest heights, and 
Method 2, measurement of the radius, the height of the cylinder’s 

axis, and the cutting plane angle (Figure 1). In Figure 1, ℎ is the 

height of the cylinder’s axis; ℎ1 is the minimum height of the 

cylinder segment; ℎ2 is the maximum height of the cylinder 

segment; 𝑅 is the radius of the cylinder; 𝛼 is the angle from the 

cutting plane to the bottommost circular cross-section; 𝐶(𝑥,𝑦,𝑧) is 

the graphical representation of the cylinder’s centroid, 𝐶𝑥 is its 

horizontal distance from the axis of the cylinder, 𝐶𝑦 is always 

zero (the cylinder cut is considered perpendicular to the Y plane) 

and 𝐶𝑧 is its vertical distance from the bottom of the cylinder. In 
this work, the measurement of the radius was considered to have 
the same characteristics of the measurement of the diameter. 

If one can select from multiple measurement instruments, not 
only of different uncertainties but also of different quantities or 
even natures, there can be multiple ways of determining the 
uncertainty of the measurand based on different mathematical 
models. In the case of the volume and centroid of a cylindrical 
segment, which has at least two measurement methods, the best 
match can be found by applying the uncertainties of reference 
instruments and estimating the uncertainties of the target 
properties from their formulas and calculating the results by 
applying the Guide to the expression of uncertainty in 
measurement (GUM) technique [8]. 

The aim of this study is to compare those two measurement 
methods. The first step is to enumerate some equations that 
might be of interest and shed light to a researcher on the 
properties of tilt hydrometers [9]-[11]. Practical recent studies 
that use this principle can be applied in diverse scientific 
applications such as a small multi-rotor airship [12], a 
hydrodynamic model of robots [13], a glider [14], geometrical 
parameters of the hull ship [15]-[17], a stratospheric airship [18], 
swimsuits [19], [20] and artisanal and small-scale beer brewing 
instruments [21]. The second step is to estimate the uncertainties 
associated with each measurand and calculate their impact on the 
combined uncertainties of those equations. Lastly, some 
comments are made about how a researcher might choose which 
method better fits a specific purpose, depending on the 
application’s needs, the measurement instruments’ uncertainties 
and the importance given for each variable. 

2. METHODOLOGY 

2.1. The correct centroid 

While the volume of a cylindrical segment may be found 
intuitively, the position of its barycenter is not calculated trivially. 
In the literature, two different equations are available for 

calculating the 𝑧 coordinate of the barycenter, 𝐶𝑧 [22], [23], 
respectively, Equation (1) and Equation (2): 

𝐶𝑧 =
ℎ

2
+

𝑅2 tan2 𝛼

2 ℎ
 (1) 

𝐶𝑧 =
ℎ

2
+

𝑅2 tan2 𝛼

8 ℎ
 . (2) 

As Equations (1) and (2) are different by a single factor, one 
suspects that one of them is not correct. Let’s consider that 
Equations (3) and (4) are available to convert from Method 1 to 
and from Method 2.  

ℎ =
ℎ1 + ℎ2

2
 (3) 

tan 𝛼 =
ℎ2 − ℎ1

2 𝑅
 . (4) 

Thus, it is possible to substitute them in Equation (1) to 
contrast it with Equation (2), which yields Equation (5): 

𝐶𝑧 =
ℎ1 + ℎ2

4
+

𝑅2 (
ℎ2−ℎ1

2 𝑅
)

2

ℎ1 + ℎ2

=
ℎ1

2 + ℎ2
2

2 (ℎ1 + ℎ2)
 . (5) 

This is a different result from the one obtained by Weisstein 
[23], Equation (6): 

𝐶𝑧 =
5 ℎ1

2 + 6 ℎ1 ℎ2 + 5 ℎ2
2

16 (ℎ1 + ℎ2)
=

ℎ

2
+

𝑅2 tan2 𝛼

8 ℎ
 . (6) 

Therefore, the previous suspicion is confirmed. However, to 
ascertain which formula is correct, Equation (1) or Equation (6), 
it was preferable to calculate the center of mass by integrating the 
moments and dividing by the volume, considering that the 
barycenter is equal to the centroid in a solid with uniform density, 
Equation (7): 

∫ ∫ ∫ 𝑧 𝑟 d𝑧 d𝜃 d𝑟

π 𝑅2 ℎ
=

∫ ∫ ∫ 𝑧 𝑟 d𝑧 d𝜃 d𝑟
ℎ(𝑟, 𝛼)

0

2 π

0

𝑅

0

π 𝑅2 (
ℎ1+ℎ2

2
)

 (7) 

where ℎ(𝑟, 𝛼) = ℎ1 +
1

2
(1 +

𝑟

𝑅
cos 𝛼) (ℎ2 − ℎ1). 

This results in the same formula of Weisstein [23], which 
settles the dispute, i.e., Equation (6) is the correct form. All other 
mathematical formulas are the same for the two methods after 
converting the variables. 

2.2. Uncertainty evaluation 

The formulas from Weisstein [23] can be expressed in two 
forms, Table 1. Conversion between the two forms can be made 
by using Equation (3) and Equation (4). 

Here, it was considered that all variables are uncorrelated. On 
the other hand, if the nonlinearities that arise from the angular 
equations become a source of concern, the researcher can also 
investigate higher-order Taylor series expansions or Monte Carlo 
methods [24], [25]. Cylindricity errors [1] are considered out of 
scope for this study. 

 

Figure 1. A cylindrical segment (a), which are usually represented by two sets 
of variables – (b) and (c) – that can be measured by two different methods, 
and a graphical representation of the centroid (d). (b), (c) and (d) are 
representations of the cylindrical segment’s cross-section through its cut’s 
major axis.  
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2.3. Comparing the approaches 

Starting with the volume, calculating the two different 
equations for volume in Table 1 yields: 

Method 1: 𝑉1 = 𝑓(𝑅, ℎ1, ℎ2) =
π 𝑅2 (ℎ1+ℎ2)

2
 

The relative combined uncertainty is expressed in Equation (8): 

𝑢𝑐1
2 (𝑉1)

𝑉1
2 = (

𝜕𝑓

𝜕𝑅
)

2 𝑢1
2(𝑅)

𝑉1
2 + (

𝜕𝑓

𝜕ℎ1

)
2 𝑢1

2(ℎ1)

𝑉1
2

+ (
𝜕𝑓

𝜕ℎ2

)
2 𝑢1

2(ℎ2)

𝑉1
2  

𝑢𝑐1
2 (𝑉1)

𝑉1
2 =

4

𝑅2
𝑢1

2(𝑅) +
1

(ℎ1 + ℎ2)2
𝑢1

2(ℎ1)

+
1

(ℎ1 + ℎ2)2
𝑢1

2(ℎ2) . 

(8) 

Method 2: 𝑉2 = 𝑓(𝑅, ℎ) = π 𝑅2 ℎ 
The relative combined uncertainty is expressed in Equation (9): 

𝑢𝑐2
2 (𝑉2)

𝑉2
2 = (

𝜕𝑓

𝜕𝑅
)

2 𝑢2
2(𝑅)

𝑉2
2 + (

𝜕𝑓

𝜕ℎ
)

2 𝑢2
2(ℎ)

𝑉2
2

=
4

𝑅2
𝑢2

2(𝑅) +
1

ℎ2
𝑢2

2(ℎ) . 

(9) 

Related to the centroid for 𝑥, the exact same methods can be 

applied to both the 𝑥 and 𝑧 centroids. 

Method 1: 𝐶𝑥1 = 𝑓(𝑅, ℎ1, ℎ2) =
𝑅(ℎ2−ℎ1)

4(ℎ1+ℎ2)
 

The relative combined uncertainty is expressed in Equation (10): 

𝑢𝑐1
2 (𝐶𝑥1)

𝐶𝑥1
2 = (

𝜕𝑓

𝜕𝑅
)

2 𝑢1
2(𝑅)

𝐶𝑥
2

+ (
𝜕𝑓

𝜕ℎ1

)
2 𝑢1

2(ℎ1)

𝐶𝑥
2

+ (
𝜕𝑓

𝜕ℎ2

)
2 𝑢1

2(ℎ2)

𝐶𝑥
2

=
1

𝑅2
𝑢1

2(𝑅) +
4 ℎ2

2

(ℎ1 − ℎ2)2(ℎ1 + ℎ2)2
𝑢1

2(ℎ1)

+
4 ℎ1

2

(ℎ1 − ℎ2)2(ℎ1 + ℎ2)2
𝑢1

2(ℎ2) . 

(10) 

Method 2: 𝐶𝑥2 = 𝑓(𝑅, ℎ, 𝛼) =
𝑅2 tan(𝛼)

4 ℎ
 

The relative combined uncertainty is expressed in Equation (11): 

𝑢𝑐2
2 (𝐶𝑥2)

𝐶𝑥2
2 = (

𝜕𝑓

𝜕𝑅
)

2 𝑢2
2(𝑅)

𝐶𝑥
2

+ (
𝜕𝑓

𝜕𝛼
)

2 𝑢2
2(𝛼)

𝐶𝑥
2

+ (
𝜕𝑓

𝜕ℎ
)

2 𝑢2
2(ℎ)

𝐶𝑥
2

=
4

𝑅2
𝑢2

2(𝑅) +
4

sin2(2 𝛼)
𝑢2

2(𝛼) +
1

ℎ2
𝑢2

2(ℎ). 

(11) 

When the same methodology is applied to the 𝒛 centroid, it is 
much harder to read clearly. 

Method 1: 𝐶𝑧1 = 𝑓(𝑅, ℎ1, ℎ2) =
5 ℎ1

2+6 ℎ1 ℎ2+5 ℎ2
2

16 ℎ1+16 ℎ2
 

The relative combined uncertainty is expressed in Equation (12): 

𝑢𝑐1

2 (𝐶𝑧1)

𝐶𝑧1
2 = (

𝜕𝑓

𝜕ℎ1
)

2 𝑢1
2(ℎ1)

𝐶𝑧
2 + (

𝜕𝑓

𝜕ℎ2
)

2 𝑢1
2(ℎ2)

𝐶𝑧
2

=
(5 ℎ1

2 + 10 ℎ1 ℎ2 + ℎ2
2)2

(5 ℎ1
3 + 11 ℎ1

2 ℎ2 + 11 ℎ1 ℎ2
2 + 5 ℎ2

3)2
𝑢1

2(ℎ1)

+
(ℎ1

2 + 10 ℎ1 ℎ2 + 5 ℎ2
2)2

(5 ℎ1
3 + 11 ℎ1

2 ℎ2 + 11 ℎ1 ℎ2
2 + 5 ℎ2

3)2
𝑢1

2(ℎ2) . 

(12) 

Method 2: 𝐶𝑧2 = 𝑓(𝑅, ℎ, 𝛼) =
𝑅2 tan2(𝛼)

8 ℎ
+

ℎ

2
 

The relative combined uncertainty gets, Equation (13): 

𝑢𝑐2
2 (𝐶𝑧2)

𝐶𝑧2
2 = (

𝜕𝑓

𝜕𝑅
)

2 𝑢2
2(𝑅)

𝐶𝑧
2

+ (
𝜕𝑓

𝜕𝛼
)

2 𝑢2
2(𝛼)

𝐶𝑧
2

+ (
𝜕𝑓

𝜕ℎ
)

2 𝑢2
2(ℎ)

𝐶𝑧
2

 

=
4 𝑅2 tan4(𝛼)

(𝑅2 tan2(𝛼) + 4 ℎ2)2
𝑢2

2(𝑅)

+
4 𝑅4 tan2(𝛼)

(𝑅2 tan2(𝛼) + 4 ℎ2)2 cos4(𝛼)
𝑢2

2(𝛼)

+
(4 ℎ2 − 𝑅2 tan2(𝛼))

2

ℎ2 (𝑅2 tan2(𝛼) + 4 ℎ2)2
𝑢2

2(ℎ) . 

(13) 

3. RESULTS AND DISCUSSION 

In this section, the uncertainties are treated as a function of 
the independent variables for each equation and method. To be 

clearer when making comparisons, especially when using ℎ1 and 

ℎ2, the method number was applied as a subscript to the volume 

functions (𝑉1 and 𝑉2) and their respective combined 

uncertainties (𝑢𝑐1
 and 𝑢𝑐2

). 

3.1. Volume 

To better make a comparison, the plot in Figure 2 was drawn. 

Empirical values of 𝑅 = 22.5 mm, ℎ1 = 61 mm, ℎ2 = 106 

mm, and ℎ = 83.5 mm were used. Those references were 
chosen as they match the dimensions of another study the 
authors are working on, plus an initial supposition of a 45-degree 
angle. This angle was also chosen for analysis to minimize the 

Table 1. Formulas for cylindrical segment properties. 

Quantities Method 1: 𝑅, ℎ1, ℎ2 Method 2: 𝑅, ℎ, 𝛼 

Volume π 𝑅2 (
ℎ1 + ℎ2

2
) π 𝑅2 ℎ 

Centroid for 𝑥 
𝑅 (ℎ2 − ℎ1)

4 (ℎ1 + ℎ2)
 

𝑅2 tan 𝛼

4 ℎ
 

Centroid for 𝑦 0 0 

Centroid for 𝑧 
5 ℎ1

2 + 6 ℎ1 ℎ2 + 5 ℎ2
2

16 (ℎ1 + ℎ2)
 

ℎ

2
+

𝑅2 tan2 𝛼

8 ℎ
 

 

Figure 2. Uncertainties for volume. Solid lines are for Method 1 (𝑢1(ℎ2)), 
dashed line is for Method 1 with equal height uncertainties (𝑢1(ℎ2) =
𝑢1(ℎ1)) and dotted line is for Method 2 (𝑢2(ℎ)).  
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effects of the nonlinearity brought by trigonometric functions, 
especially the tangent. The results and conclusions can vary 
depending on the magnitude of the actual quantity values. 

A range of ℎ2 values was plotted for comparison. For Method 
2, only a single line was drawn since it only has two variables. 

The value of 𝑢1,2(𝑅) = 0.2 mm was used for all calculations, 

except where noted (Figure 3) since the radius uncertainty is not 
affected by the height uncertainties. From Figure 2, it is 
interesting to note that Method 2 (dotted line) starts with a very 
small uncertainty result but increases rapidly when the 
uncertainty of the height measurement increases. Another 

surprising result was obtained by plotting a line where 𝑢1(ℎ1) =
𝑢1(ℎ2) (dashed line). This equality is commonly encountered 
because these two linear measurements are usually taken by the 
same instrument. This contrasts with the dotted line, which 
increases faster. To mathematically investigate this behavior, it is 
possible to substitute those uncertainties with a single one, 

𝑢1(ℎ1,2), in Equation (8): 

𝑢𝑐1
2 (𝑉1)

𝑉1
2 =

4

𝑅2
𝑢1

2(𝑅) +
1

(ℎ1 + ℎ2)2
𝑢1

2(ℎ1)

+
1

(ℎ1 + ℎ2)2
𝑢1

2(ℎ2)

=
4

𝑅2
𝑢1

2(𝑅) +
2

(ℎ1 + ℎ2)2
𝑢1

2(ℎ1,2) . 

(14) 

This contrasts with the result obtained by Method 2 on 

Equation (9), when replacing ℎ =
ℎ1+ℎ2

2
: 

𝑢𝑐2
2 (𝑉2)

𝑉2
2 =

4

𝑅2
𝑢2

2(𝑅) +
1

ℎ2
𝑢2

2(ℎ)

=
4

𝑅2
𝑢2

2(𝑅) +
4

(ℎ1 + ℎ2)2
𝑢2

2(ℎ) 

(15) 

The results differ by a factor of 2 in the second addend of the 

relative combined variance (or √2 for the relative combined 
uncertainty, if the first addend is nullified by zeroing the radius 
uncertainty), which can be considered equivalent to the 

production of two measurements for ℎ. This effect can be 
viewed better when producing a plot with a zeroed uncertainty 

for 𝑅, Figure 3. 

3.2. Centroid for 𝒙 

The results are available in Figure 4 and Figure 5, Methods 1 

and 2, respectively. Since there is a third variable (𝛼) in Method 

2, it was necessary to divide the plots of the two methods. For 
comparison purposes, the same vertical axis was maintained. 

For this case, however, it is harder to make comparisons since 
the uncertainty for Method 1 results in a function of two linear 

parameters (ℎ1 and ℎ2) and their uncertainties, while the 

uncertainty function for Method 2 presents one linear (ℎ) and 

one angular (𝛼) parameters and their uncertainties. Especially 
tricky is visualizing the role of a squared trigonometric function, 

sin2(2 𝛼) from Equation (11), in the final result. The horizontal 
scale of the plot for Method 2 was defined by taking the 

maximum uncertainty 𝑢1(ℎ1) from the plot for Method 1 

(0.5 mm), making 𝑢(ℎ2 − ℎ1) = 𝑢(ℎ2) + 𝑢(ℎ1) ≈ 2 𝑢(ℎ1), 

adding that to ℎ2 − ℎ1, taking the arctangent of the angle created 

by the 2 𝑅 and this line and then subtracting the original angle 𝛼 

(45° or π/4 radians) and using this value as the maximum 

uncertainty of 𝛼, or 𝑢2(𝛼). A schematic of the geometry 
calculations can be viewed in Figure 6. 

Note that the lines for Method 2 are much closer together. 
This behavior indicates that the uncertainty is more affected by 

𝛼 than by ℎ, since the same variation applied to 𝑢2(ℎ) leads to a 

smaller variation in the combined uncertainty 𝑢𝑐(𝐶𝑥). Moreover, 
Method 1 appears to show smaller combined uncertainty for the 
chosen characteristics.  

 

Figure 3. Volume uncertainties if radius uncertainty is equal to zero. Solid 
lines are for method 1, the dashed line is for method 1 with equal height 
uncertainties and the dotted line is for method 2.  

 

Figure 4. Uncertainties for the centroid in the X plane, Method 1.  

 

Figure 5. Uncertainties for the centroid in the X plane, Method 2.  
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3.3. Centroid for 𝒛 

It is interesting to note that, for method 1, 𝑅 does not affect 

the uncertainty formula, i.e., 𝑅 and 𝑢(𝑅) do not appear in 
Equation (12). This was expected since the uncertainties 
expressed here are relative, and the radius only proportionately 

affects the 𝑧 centroid, Figure 7a, Figure 7b and Figure 7c. 
The resulting subplot for method 2 (Figure 7b) appears very 

different from the others and presents almost horizontal lines. 

By investigating the behavior of the 𝑢2(ℎ) = 0 curve, which 
should be a straight line, it was suspected that the initial 

assumption for the range of 𝑢2(𝛼) was somewhat wrong for this 
case. Thus, another subplot was created, which increased the 

range of 𝑢2(𝛼) by an order of magnitude to allow for the 
observation of its effects over a longer span (Figure 7c). 

In this case, it became very clear, from the increased distance 
between the lines for Method 2, that the effects of the 

uncertainty of 𝒉 dominated over the effects of 𝜶 at the start of 

the 𝒖(𝜶) range, which prompted the change in presentation. By 
comparing Figure 7a, Figure 7b and Figure 7c, and assuming that 

the same measurement instrument is used for ℎ1, ℎ2 and ℎ, 

which yields 𝑢1(ℎ1) = 𝑢1(ℎ2) = 𝑢1(ℎ), one can see that the 

ratio between 𝑢(ℎ) and 𝑢(𝛼) will determine the best method to 
use. 

Practical applications should also consider that measuring the 

minimum and mean heights, respectively ℎ1 and ℎ, is usually 

harder than measuring ℎ2 due to geometry and instrument 
constraints, e.g., a pachymeter does not lock to an oblique edge 

or to a specific point in a plane. This may increase 𝑢1(ℎ1) and 

𝑢2(ℎ).  
Unfortunately, for the application currently in the study by 

the authors [8]-[10], Method 1 may not be available for practical 
purposes, which means that actual measurement uncertainties 
will have to rely on angle measurements. However, the 
comparison of these methods drew ideas that may be used in the 
future to build better sensors. 

4. CONCLUSIONS 

From the comparison of the two methods, using the proper 
measurement method can improve the results. The careful 
weighting of the influence of every quantity on the uncertainty 
for each property can then help the researcher choose which 
method is more advantageous. In the case of the tilt hydrometer, 
the sensitivity of the final model to each of these uncertainties 
must be tested, if the method of measuring the two heights 
separately is possible. 

While a definitive answer can only be found when comparing 
specific measurements, which vary with the problem to be 

solved, it appears that the method of measuring two heights is 
appropriate more often. Whereas the measurement of the 

minimum height ℎ1 is not easy, the difficulty of finding the true 

center of the cylinder segment to measure ℎ must also be taken 
into consideration. Additionally, angle uncertainties are usually 
harder to reduce. 

This work fills a gap in the analysis in the measurement of the 
cylindrical segment, which is a less common solid, but which can 
nonetheless be used in evaluating the measurement uncertainty 
of sensors. 

 

Figure 6. Schematic of the calculations done to obtain the maximum 
uncertainty for comparison of Method 2.  

 

 

 

Figure 7. Uncertainties for the centroid in the Z plane. Subplot c) increases by 

ten times the u2() range of subplot b).  
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