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1. INTRODUCTION 

Unfortunately, the list of past incidents involving bad random 
number generation is not too modest. Bad randomness has been 
with us for as long as random number generation has been in 
use. Perhaps the oldest catastrophe is RANDU, from IBM’s 
System/370, used in the 60s. ‘[The] very name RANDU is 
enough to bring dismay into the eyes and stomachs of many 
computer scientists! [...] [It] fails most three-dimensional criteria 
for randomness, and it should never have been used.’ [1] 

In 1996, Netscape Communications failed to properly seed 
their random number generator during SSL handshaking: they 
used the current timestamp and the browser’s PID and PPID. 

In UNIX systems, PID means process identifier and PPID is the 

process parent’s PID. In the 32-bit Linux kernel version 2.5.68, every 

PID is an integer between 1 and 32767. In 64-bit systems, the value can 

get up to 222, approximately 4.2 million [2]. 
The seed per se was computed by the MD5 hash function, but 

since an adversary could have a precise measurement of the 
current timestamp and the universe of possible PID numbers 
was not large, it was possible to considerably reduce the set of 

possible seeds available to the generator. While Netscape 
thought they had 128 bits of security, they in fact had 47 bits [3]. 

In 2003, Taiwan launched a project offering its citizens a 
smart card with which they could authenticate themselves with 
the government, file taxes, etc. RSA keys were generated by the 
cards using built-in hardware random number generators 
advertised as having passed FIPS 140-2 Level 2 certification [4]. 
‘On some of these smart cards, unfortunately, the random-
number generators used for key generation are fatally flawed and 
have generated real certificates containing keys that provide no 
security whatsoever.’ As a result, a total of 184 distinct secret keys 
were found out of more than two million 1024-bit RSA keys 
downloaded from Taiwan’s national key repository [5]. 

In 2008, a vulnerability in OpenSSL on Debian-based 
operating systems was caused by ‘a random number generator 
that [produced] predictable numbers, [making] it easier for 
remote attackers to conduct brute force guessing attacks against 
cryptographic keys’ [6]. 

In 2012, a survey of TLS and SSH servers was performed [7]. 
The entire IPv4 space was scanned, providing a macroscopic 
view of the universe of keys on the Internet. Unfortunately, many 
servers were powered by malfunctioning random number 
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generators. About 5.8 million distinct TLS certificates and 6.2 
million SSH distinct keys were analysed from about 10.2 million 
hosts. It was found that 5.57 % of the TLS servers and 9.60 % 
of the SSH servers shared keys with at least one other server. 
Among TLS servers, at least 5.23 % were using default keys 
generated by the manufacturer that had never been changed by 
the user. It seems some 0.34 % generated the same keys as one 
or more hosts due to malfunctioning random number 
generators. As a result, about 64,000 (0.50 %) TLS private RSA 
keys and about 108,000 (1.06 %) SSH private RSA keys were 
factored by exploiting the fact that some of these keys shared a 
common factor with at least one other host due to entropy 
problems in random number generation. 

As technology adoption advances, incidents become more 
frequent. In 2013, a component of Android responsible for 
generating secure random numbers contained a weakness that 
rendered all Android wallets generated until then vulnerable to 
theft [8], [9], [10]. In 2015, a flaw in FreeBSD’s kernel made SSH 
keys and keys generated by OpenSSL vulnerable due to the 
possible predictability of a random number generator [11]. 

It is not absurd to assume that, in the same way that smart 
phones use the same libraries as servers and desktop systems, 
embedded systems and others will use the same or similar 
versions of these software due to their often low resource 
demands, generating more security concerns as stable 
implementations of verified software might be changed to fit in 
with the requirements of more constrained systems. 

2. TERMINOLOGY 

There are at least two types of random number generators, 
those called true random number generators (TRNGs) and those 
called pseudorandom number generators (PRNGs). The former 
is usually associated with a physical mechanism that produces 
randomness by way of a physical process ‘such as the timing 
between successive events in atomic decay’ [12]. A 
pseudorandom number generator is often an arithmetical 
procedure performed by a machine based on initial, hopefully 
random, information called a seed. If a pseudorandom number 
generator has enough desirable properties that it could be 
recommended for cryptographic applications, then the acronym 
CSPRNG is often used, meaning computationally secure 
pseudorandom number generator. 

3. WHAT IS A RANDOM SEQUENCE? 

Looking at probability theory textbooks, one sees they require 
the concept of randomness, but most expositions carefully dodge 
the difficulty of precisely defining what a random sequence is, 
which is required for the definition of the term ‘probability’. 
Instead of making absolute assertions, the theory concerns itself 
with telling how much probability should be attached to 
statements involving events. In other words, the objective is to 
quantify, measure and compute, not to give meaning [1]. From 
the perspective of a formalist, this is not unusual, for pure 
mathematics is mostly concerned with the form of statements, 
not with their content, a view of pure mathematics that has been 
remarkably described by Bertrand Russell [13]. 

 
Pure mathematics consists entirely of assertions to the 
effect that, if such and such a proposition is true of 
anything, then such and such another proposition is true of 
that thing. It is essential not to discuss whether the first 
proposition is really true, and not to mention what the 

anything is, of which it is supposed to be true. [...] Thus 
mathematics may be defined as the subject in which we 
never know what we are talking about, nor whether what 
we are saying is true. 

 

One should recognize, however, that mathematical logic is 
not able to capture the whole of mathematics, as has been clear 
since the advent of Gödel’s theorems.  (For a precise definition 
of ‘capture’, see section 4.6, page 35 of Peter Smith’s ‘An 
Introduction to Gödel’s Theorems’, Cambridge University Press, 
2007, ISBN: 978-0-521-85784-0.) 

In the context of probability theory, if one has a random 
sequence, it can be used to draw samples from a population. 
Given these random samples, then ‘such and such’ deductions 
can be made. ‘It is essential’ not to discuss whether the sequence 
with which one began is really random. It is by hypothesis. And, 
finally, it is essential not to discuss what probability really is, since 
that would prompt us to discuss what randomness is. (The issue 
is discussed at length by von Mises in ‘Probability, Truth and 
Statistics.’ Richard von Mises, 1957. Dover Publications, Inc., 2nd 
edition, 1981. ISBN: 0-486-24214-5. On page 24, von Mises 
writes that ‘[t]he term “probability” will be reserved for the 
limiting value of the relative frequency in a true collective which 
satisfies the condition of randomness. The only question is how 
to describe this condition exactly enough to be able to give a 
sufficiently precise definition of a collective.’ On page 12, he 
defines collective as ‘a sequence of uniform events or processes 
which differ by certain observable attributes’. For example, ‘all 
the throws of dice made in the course of a game form a collective 
wherein the attribute of the single event is the number of points 
thrown.’)  

However, if a probability is measured as a number, it can then 

be compared. For example, one can assert that a probability 𝑥 is 

greater than a probability 𝑦, which is astoundingly useful. 

Sequences that are ∞-distributed have been given serious 
consideration as candidates for a definition of a random 

sequence. To explain what ∞-distributivity is, it will help us to 
consider the particular case of binary sequences. A binary 

sequence is considered ∞-distributed if it is 𝑘-distributed for all 

natural numbers 𝑘. Intuitively, a 𝑘-distributed binary sequence is 

one in which the probability of a certain 𝑘-digit binary string 
appearing in the sequence is the same as any other. In other 

words, the sequence’s probability distribution is uniform for 𝑘-
digit binary strings. 

In more precise terms, a binary sequence 𝑋𝑛 is 𝑘-distributed 

for a certain 𝑘 if  
 

Pr(𝑋𝑛𝑋𝑛+1 … 𝑋𝑛+𝑘−1 = 𝑥1𝑥2 … 𝑥𝑘) = 1/2𝑘 
 

for all binary 𝑘-digit numbers 𝑥1𝑥2 … 𝑥𝑘. For example, a binary 

1-distributed sequence must satisfy Pr(𝑋𝑛 = 0) = 1/2 as well 

as Pr(𝑋1 = 1) = 1/2. One such sequence would be 

0, 1, 0, 1, …, since Pr(𝑋𝑛 = 0) is the limit of the sequence 

1, 1/2, 2/3, 2/4, …, which converges to 1/2 [1]. Another 

example is 0, 0, 1, 1, 0, 0, 1, 1, … For a binary sequence to be 2-
distributed, it would have to satisfy  
 

Pr(𝑋𝑛𝑋𝑛+1 = 00) = 1/4, 
Pr(𝑋𝑛𝑋𝑛+1 = 01) = 1/4, 
Pr(𝑋𝑛𝑋𝑛+1 = 10) = 1/4, 
Pr(𝑋𝑛𝑋𝑛+1 = 11) = 1/4. 
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One can check that the sequence 0, 0, 1, 1, 0, 0, 1, 1, … is also 2-

distributed, but it is not 3-distributed. It is not 3-distributed 

because Pr(𝑋𝑛𝑋𝑛+1𝑋𝑛+2 = 000) = 0 when it should be 1/8. 
This suggests that for every periodic sequence, there is a natural 

number 𝑘 such that the sequence is not 𝑘-distributed. Indeed, 

every periodic sequence of period 𝑝 is not 𝑝-distributed [14]. A 

periodic 3-distributed binary sequence is not easily guessed, but 
one can check that the sequence 
 

0,0,0,1,   0,0,0,1,   1,1,0,1,   1,1,0,1,   0,0,0,1, … 
 

is indeed 3-distributed [1]. 
An algorithm is not limited to producing periodic sequences 

– for example, an algorithm that produces the digits of 𝜋 does 
not produce a periodic sequence – so the limitation of periodic 

sequences is no challenge to the idea that ∞-distributivity defines 

randomness. In fact, one of the formidable results of ∞-
distributed sequences is that they can be produced by algorithms: 
one such algorithm was given in 1965 [14]. 

The weakness in taking the notion of ∞-distributivity alone 
as a definition for a random sequence appears when one 

considers the subsequences of an ∞-distributed sequence. If 
such sequences were random, it would be expected that any 
subsequence of a random sequence would also be random, but 

this does not always happen with ∞-distributed sequences. 

Given an ∞-distributed binary sequence 𝑋𝑛, one can construct a 

new sequence 𝑌𝑛 = 𝑋𝑛 except that 𝑌𝑛2 = 0 for every index 𝑛. 

Clearly, 𝑌𝑛 is not random because, by construction, 𝑌0,  𝑌1,  𝑌4,
𝑌9, … , 𝑌𝑛2 = 0, yet 𝑌𝑛 is still ∞-distributed because setting 
squared elements to zero does not significantly change the 

probabilities required in the definition of 𝑘-distributivity [1]. 

That is, ∞-distributivity alone is too weak a definition. An 
apparently adequate definition is reached by making suitable 
restrictions to the rules governing which subsequences must be 

∞-distributed. That is, not all subsequences of an ∞-distributed 

sequence 𝑋𝑛 must be ∞-distributed for 𝑋𝑛 to be qualified as 
random [1]. ‘The secret is to restrict the subsequences so that 

they could be defined by a person who does not look at’ 𝑋𝑛 
‘before deciding whether or not it is to be in the subsequence’ 
[1]. To date, there does not seem to be any objection to this 
strategy. 

4. WHAT IS A PSEUDORANDOM NUMBER GENERATOR? 

Since algorithms cannot compute random sequences [15], 
they are left with at most producing pseudorandom number 
sequences displaying the desired statistical properties. A 
pseudorandom number generator, therefore, is an arithmetical 
procedure that produces a sequence of numbers that one hopes 
will pass sufficient statistical tests and thus appear random. It can 

be as simple as a function 𝑓(𝑥𝑛) = 𝑥𝑛−1
2 + 1 mod 𝑁, for some 

fixed natural number 𝑁 or as complex as Donald Knuth’s ‘super-
random’ number generator [1], shown as an illustration of how 
complicated algorithms do not necessarily provide any more 

randomness. (The function 𝑓(𝑥𝑛) = 𝑥𝑛−1
2 + 1 mod 𝑁 is 

typically used in a method of integer factorisation known as 
Pollard’s Rho. One interesting fact about the method is that, 

while polynomials like 𝑓 do not have good statistical properties, 
the average number of steps taken by the procedure would 
considerably increase if a truly random sequence were used 
instead [16]. Sometimes true randomness is not desired.) 

For illustration purposes, let us look at what a simple 
pseudorandom number generator looks like in the C 
programming language. 

 
uint32_t y = 2463534242U; /* the seed */ 

uint32_t xorshift(void) { 

  y = y ^ (y << 13); 

  y = y ^ (y >> 17); 

  y = y ^ (y << 5); 

  return y; 

} 
 
This is George Marsaglia’s Xorshift generator of 32 bits [17]. 

The variable y is a global variable in the xorshift procedure. 
The letter U at the end of the seed is just an indicator that that 
number is an unsigned integer. What this procedure does 
is multiply the arbitrarily set initial value 2463534242, the seed, 

to the number 213 and add the result to y; that is, it adds the 
product to the initial value. The multiplication is done in fast 
computer arithmetic, namely, shifting y to the left by 13 bits 
because, in base 2 arithmetic, shifting a number to the left means 
adding zeros to the right of the number, which is the same as 
multiplying it by a power of 2. For example, by taking the number 
5, which is 101 in base 2, and multiplying it by 2, one gets 10, 

which is 1010 in base 2. The second step divides y by 217 and 
adds the result to y. The last step is similar. All such 

computations are reduced modulo 232. (ANSI X3.159-1989 
asserts in section 3.1.2.5 that ‘[a] computation involving unsigned 
operands can never overflow, because a result that cannot be 
represented by the resulting unsigned integer type is reduced 
modulo the number that is one greater than the largest value that 
can be represented by the resulting unsigned integer type’.) 
Looking at the numbers produced by this generator, they appear 
random to the naked eye, but the sequence does not pass even a 
modest contemporary battery of statistical tests. 

5. DESIRABLE PROPERTIES OF GENERATORS 

True random number generators have several disadvantages 
compared to a good pseudorandom number generator. For 
example, they are slower, more cumbersome to install and run, 
more costly and unable to reproduce the same sequence twice. 
(Reproducing the same sequence is important for repeating 
simulations and testing applications.) But a pseudorandom 
number generator does need a good seed, which true random 
number generators can provide [12]. 

When choosing a pseudorandom number generator, one 
must know what to look for. Some of the properties one can find 
in pseudorandom number generators, to name a few, are good 
statistical properties, good mathematical foundations, lack of 
predictability, cryptographic security, efficient time and space 
performance, small code size, a sufficiently long period and 
uniformity [18]. 

In the context of computer-generated randomness, good 
statistical properties are effectively what is meant by ‘random’ 
[18]. Mathematical foundations allow us to be sure a 
pseudorandom number generator has some desirable property, 
such as its period, which is defined as the length of the sequence 
of random numbers the generator can produce before needing 
to repeat itself. Having a long period is surely desirable. 
Uniformity is a property closely related to the period. After the 
generator has output all its period, each number produced should 
occur the same number of times, otherwise it is not uniform. If 
it is not uniform, it is biased. Uniformity alone, without a long 
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period, is certainly not desirable. Consider what happens as a 
uniform generator is consumed. As the end of its period draws 
near, its uniformity effectively allows one to predict more and 
more of its output, since all output must occur the same number 
of times [18]. 

 
For example, let us consider a case where we can 
show that a generator must lack uniformity in its 

output. Consider a generator with 𝑏 bits of state, but 

where one of the 2𝑏 possible states is never used, 
(perhaps because the implementation must avoid an 
all-bits-are-zero state). The missing state would leave 

the generator with a period of 2𝑏 − 1. By the 
pigeonhole principle, we can immediately know that 

it cannot uniformly output 2𝑏 unique 𝑏-bit values. 
 

So, the period of a generator cannot be too short, lest it repeat 
itself while in use, which makes it statistically unsound. A large 
internal state implies the possibility of a longer period because it 
allows for more distinct states to be represented. Yet, in terms of 
period size, more is not always better. For example, if one is to 

choose between generators with period sizes of 2128 and 2256, 
one should notice that it would take billions of years to exhaust 

the period of the 2128 generator, so picking the generator with 

period 2256 does not bring a relevant advantage. ‘Even a period 

as “small” as 256 would take a single CPU core more than two 
years to iterate through at one number per nanosecond.’ [18] 

Another valuable property is unpredictability. ‘A die would 
hardly seem random if, when I’ve rolled a five, a six, and a three, 
you can tell me that my next roll will be a one.’ [18] Still, 
pseudorandom number generators are deterministic, and their 
behaviour is completely determined by their input: they produce 
the same sequence given the same input. So, their randomness is 
only apparent to an observer who does not know their initial 
conditions. Though the deterministic nature of pseudorandom 
number generators might seem more like a weakness than a 
strength, it is valuable for reproducing the same sequence 
multiple times, which is required in a number of applications, 
from simulations and games to the mere testing of programs. To 
repeat a sequence generated by a pseudorandom number 
generator, one needs only save its initial conditions, usually just 
the seed for the produced sequence. To repeat a sequence from 
a true random number generator, the entire produced sequence 
would have to be saved. 

It is not immediately obvious that a procedure computed by 
a machine can be unpredictable, but some pseudorandom 
number generators output a number while keeping another one 
hidden from the user. The hidden information is called the 
pseudorandom number generator’s internal state. Predicting the 
pseudorandom number generator entails knowing the internal 
state. 

Unpredictability is important for applications concerned with 
security because predicting a pseudorandom number generator 
allows for various types of attacks, including denial of service 
[19]. If a pseudorandom number generator leaks internal state 
information at each output, an adversary is able to little by little 
infer the complete internal state, at which point the generator 
becomes completely predictable, at least from that point in the 
sequence on, which is a flaw of Mersenne Twister [20]. 

Predictability can be considered in two directions: forwards 
and backwards. A generator is said to be invertible if, once its 
internal state is known, the random numbers it generated 

previously can be recovered. Being non-invertible is vital for 
applications that generate cryptographic keys; if the generator is 
invertible and its internal state is exposed at some point in time, 
adversaries will be able to recover all previously generated keys. 
So, cryptographically secure pseudorandom number generators 
are not invertible. Although some applications may not be 
designed with cryptography in mind, it is prudent to pick the 
safest generator that a project can afford [18]. 

 
[Because] we cannot always know the future contexts 
in which our code will be used, it seems wise for all 
applications to avoid generators that make 
discovering their entire internal state completely 
trivial. 

 

Speed is another important property, particularly when 
considering low resource systems. An application that is too 
dependent on a random number generator will be as slow as the 
generator used. Applications running in low-resource hardware 
will likely trade other properties for speed and space. Many 
generators with good statistical properties are slow, but there are 
some generators that have relatively good time performance 
while showing acceptable statistical properties. For example, 
XorShift* 64/32 [17] has good performance and good 
statistical properties [18], although it is not safe for cryptographic 
applications. 

Most generator implementations will take just a constant 
amount of memory to store their state, but considering the strict 
constraints some applications face, the size of these constants 
should also lead programmers to choose one over another. Space 
is also related to speed: considering all other things to be equal, 
a generator that is able to keep its internal state completely within 
a processor register should outperform a competitor that needs 
many more bytes of internal state to be kept in main memory 
[18]. 

There are also the space constraints of code size. Such space 
is most likely a constant, but constants do matter for applications 
running in low-resource hardware. The longer the code, the more 
likely it will include programming errors. Such errors can be 
particularly difficult to detect in the context of random number 
generators [18]. 
 

From […] experience, I can say that implementation 
errors in a random number generator are challenging 
because they can be subtle, causing a drop in overall 
quality of the generator without entirely breaking it. 

 

Another desirable property is seekability, the ability of a 
generator to skip ahead or jump back in the sequence. Since 
pseudorandom number generators are cyclic, by skipping a 
sufficient number of elements, one can get back to the starting 
number, meaning that the ability to seek ahead also implies the 
ability to seek backwards. Computationally secure 
pseudorandom number generators are designed not to be 
seekable, as it is not desirable to let an adversary read the 
sequence backwards, discovering which numbers might have 
been used in the past. 

6. STATISTICAL HYPOTHESIS TESTING 

Statistical theory allows us to posit a hypothesis 𝐻0 about a 
random number generator and devise tests to provide empirical 

evidence of the validity of 𝐻0. These tests, in turn, either give us 

more confidence in the hypothesis 𝐻0 or leads us to reject it. A 
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statistical test for a random number generator is defined by a 

random variable 𝑋 whose distribution under 𝐻0 can be well 

approximated. When 𝑋 takes the value 𝑥, define 

𝑝𝑅 = Pr(𝑋 ≥ 𝑥 | 𝐻0) and 𝑝𝐿 = Pr(𝑋 ≤ 𝑥 | 𝐻0) as the left and 

right 𝑝-value, respectively. Such 𝑝-values measure how likely it is 
to find a certain sample of the random number generator given 

𝐻0 is true. If it turns out that very unlikely samples occur from 
the random number generator, that is then strong evidence the 

hypothesis 𝐻0 is not true. In fact, when testing random number 

generators, if either the right or left 𝑝-value is extremely close to 

zero, then 𝐻0 should be rejected. If a suspicious 𝑝-value is 

obtained, say near 10−2 or 10−3, one can repeat the particular 
test a few more times, perhaps with a larger sample size, in the 
hope that more tests will clarify the result [12]. 

In the context of testing for randomness, 𝐻0 is usually taken 
to mean that the sequence is random. For each specific test, a 

rule must be derived that allows one to reject or not to reject 𝐻0. 

Taking 𝐻0 to mean that the sequence generated is random, the 
test produces a statistic with a certain probability distribution of 
possible values. This probability distribution must be determined 
by mathematical methods. From this distribution, a critical value 
is chosen such that a critical region in the set of possible values 
is determined. The statistic is then computed from the sample 
and compared to the critical value. If the statistic falls in the 

critical region, 𝐻0 is rejected; that is, one concludes the sequence 

produced by the generator is not random. Otherwise, 𝐻0 is not 
rejected. If the generator produces a random sequence, then the 
computed statistic will have a very low probability of falling in 
the critical region, and if such an event occurs systematically, it 
provides strong evidence that the sequence is not random as 

assumed in 𝐻0.  
Although the probability for such an event may be very low, 

it is not null. Incorrectly classifying a sequence produced by a 
generator as not random is called a type I error. Much worse 

would be if 𝐻0 is not rejected when the sequence produced by 
the generator is not random, an error that is called type II.  

The probability of type I error is usually denoted by 𝛼 and is 
called the level of significance of the test. The probability of type 

II error is usually denoted by 𝛽. The value of 𝛼 can be arbitrarily 
chosen; that is, if a specific probability of type I error is desired, 

say 1 %, one can set 𝛼 =  0.01 for the specific test. Doing the 
same for type II error is not so easy. Recall that the probability 
distribution for the statistic produced by the test was determined 
assuming the generator does indeed produce a random sequence, 

that is, assuming 𝐻0 is true. In the case of type II error, 𝐻0 is not 
true, so the probability distribution of the statistic test is not 

known. Unless this probability distribution is known, 𝛽 is not a 
fixed value because there is an infinite number of ways that a 
sequence can be non-random. Each different way determines a 

different 𝛽. 

7. THE STATE-OF-THE-ART IN STATISTICAL TESTS 

Under the framework of hypothesis testing, a series of tests 
can be devised to analyse samples of the random number 
generator. There is no maximum number of tests one can apply 
to a random number generator, and there is no maximum 
number of tests a random number generator can pass that will 
prove it to be truly random. It is also not possible to build an 
algorithmic random number generator that passes all statistical 
tests [12]. Nonetheless, the more tests one applies to a random 

number generator, the more confident one becomes of its 
quality. 

Perhaps the first battery of tests was devised by Donald 
Knuth in 1969 [1]. In 1996, given the insufficiency of Knuth’s 
tests, George Marsaglia published DIEHARD [21]. To 
supersede Marsaglia’s tests, NIST, in the United States, published 
its own battery [22] in the year 2000, with its latest revision in 
2010. Robert Brown published DieHarder in 2004. In 2007, 
Pierre L’Ecuyer and Richard Simard published TestU01, a C 
library with which C programmers can implement and test 
random number generators [23]: 

 
… empirical testing of random number generators is very 
important, and yet no comprehensive, flexible, state-of-the-
art software is available for that, aside from the one we are 
now introducing. The aim of the TestU01 library is to 
provide a general and extensive set of software tools for 
statistical testing of random number generators. It 
implements a larger variety of tests than any other available 
competing library we know. [...] TestU01 was developed 
and refined during the past 15 years and beta versions have 
been available over the Internet for a few years already. It 
will be maintained and updated on a regular basis in the 
future. 

 

TestU01’s results were ‘sobering’ [14] for many ‘respectable’ and 
well-known random number generators [18]: 
 

[Pierre L’Ecuyer and Richard Simard] made a very 
significant contribution to the world of random-number–
generator testing when they created the TestU01 statistical 
test suite. Other suites, such as [DIEHARD], had existed 
previously, but TestU01 (which included a large number of 
previously independently published tests, and applied them 
at scale) vastly increased the scope and thoroughness of the 
testing process. 

 

The library comes with three predefined test batteries: 
SmallCrush, the small one, Crush, the medium-sized one and 
BigCrush. SmallCrush is the quickest, and it should finish in 
under a minute on most modern desktop computers. Crush can 
take a few hours, and BigCrush takes many hours or perhaps a 
day. 

As for alternatives to TestU01, two other packages are 
competitors: PractRand 0.94 [24] and gjrand 4.2.1 [25], but 
neither has been formally published. 

8. A NOTE ON USING THE TESTU01 LIBRARY 

An inconvenience of TestU01 is that it is restricted to the C 
programming language. It is a C library, after all; it cannot run 
unless a programmer writes a program that takes advantage of 
the library. Besides, given that TestU01 is written in C, it would 
not be straightforward to use it from another programming 
language, as one would have to know how to access a C library 
from within the chosen programming language. 

This inconvenience has been mitigated by crush [26], [27], a 
program capable of testing a random number generator against 
any of the three TestU01 batteries, given the data is available on 
a file on a disk or can be produced at run time. For example, 
suppose one would like to test one’s local /dev/urandom 
against the largest TestU01 battery. It suffices to say to the shell: 

 
%crush --battery big --name xyz < /dev/urandom 

... 

% 
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Similarly, if one has a program p that can produce its allegedly 
random data to the standard output in binary format, then 
crush can test such data against the small TestU01 library with 
a command such as: 

 
%./p | crush --battery small --name my-prng 

... 

% 

 
Due to the facilities of a UNIX-like system1, crush 

eliminates the need to use the C programming language to take 
advantage of TestU01’s default batteries. 

9. A NOTE ON DEFAULT RANDOM NUMBER GENERATORS 

If one is writing a new application that needs a random 
number generator, one should not just use random number 
generators offered by the system or by the chosen programming 
language. Most programming languages have adopted flawed 
generators. Java, for example, offers the package 
java.Util.Random, which is based on the pseudorandom 
number generator drand48. It failed five tests in SmallCrush 
in less than a minute [27]. 

The default pseudorandom number generator in both Python 
and PHP is mt19937, Mersenne Twister [20]. It passes 
SmallCrush, but actually fails the linear complexity test, which 
is not included in TestU01 even though it is a quick test to run 
and could have been part of the small battery. The number 19937 
in Mersenne Twister’s name is due to its huge period of size 

219937 − 1. Despite having been a promising pseudorandom 
number generator, mt19937 can be totally predicted after 
collecting a sample of size 624 [18]. 

In C++, besides mt19937, the standard library also offers 
minstd and ranlux24, two well-known generators, but 
minstd fails 9 tests out of 15 of the small battery, and ranlux 
is not much better [23]. C++ does offer, however, ranlux48, 
which passes BigCrush and can be used by applications that 
can afford the higher cost of such generator. 

Exceptionally, some programming languages offer good 
random number generators as the default option. For example, 
the default pseudorandom number generator in the Racket 
programming language from the Lisp family is Pierre L’Ecuyer’s 
mrg32k3a [28], which passes BigCrush [23]. 

For applications that require cryptography, a well-known 
computationally secure pseudorandom number generator is 
based on the stream cipher ChaCha20 [29]. ChaCha20 has 
replaced RC4 in OpenBSD starting at version 5.4, in NetBSD in 
version 7.0 and replaced SHA-1 in the Linux kernel since version 
4.8. These events present evidence that ChaCha20 is currently 
well regarded. 

10. ON THE INSUFFICIENCY OF THE NIST SP 800-22 SUITE 

Notwithstanding the ‘sobering’ results of TestU01 [23], [18], 
it is not hard to find publications ignoring it [30], [31], [32] while 
giving attention to the software package provided by NIST SP 
800-22. Enough flaws of this test suite have been previously 
reported [33]-[37], but we will now present one more result 

 
1 Notice Windows is sufficiently UNIX-like for the purposes of 

running crush, and a Win32 binary is available on crush’s homepage 
at https://bit.ly/319bg0H. 

2 In PractRand version 0.94, the implementation is found in 

src/RNGs/other/fibonacci.cpp. 

regarding the insufficiency of the NIST SP 800-22 statistical test 
suite implementation. 

It is known that the Fibonacci sequence is not satisfactorily 
random to operate as a random number generator, but a ‘much 
better’ variation was proposed in 1958 by G. J. Mitchell and D. 
P. Moore, though it was never published. Using an output of 32-
bit integers, let us call mm32 this pseudorandom number 
generator defined by the sequence 

 

𝑋𝑛 = (𝑋𝑛−24 + 𝑋𝑛−55) mod 𝑚 
 

where 𝑛 ≥ 55, 𝑚 is even, and 𝑋0, 𝑋1, … , 𝑋54 are arbitrary 
integers not all even. The constants 24 and 55 were chosen so 
that the least significant bits of the sequence, that is the sequence 

𝑋𝑛 mod 2, will have a period of length 255 − 1, implying the 

sequence 𝑋𝑛 must also have a period of the same length [1]. 
Despite mm32’s period length, ‘it is difficult to recommend [it] 

wholeheartedly [because] there is still very little theory to prove 
that [it does or does not] have desirable randomness properties; 
essentially all we know for sure is that the period is very long, and 
this is not enough.’ [1] That is, from a theoretical perspective, 
very little is known about mm32, but, assuming TestU01 has a 
correct implementation of the statistical tests included in its 
batteries and PractRand implements mm32 correctly2, statistical 
evidence suggests mm32 does not have desirable randomness 
properties. 

Setting mm32 with an initial value of 0 in PractRand’s 
implementation and submitting it to the battery SmallCrush in 
TestU01, the battery reports that mm32 fails the gap test [1] and 
the weight distribution test [38] after consuming approximately 
6.7 gibibits3 from the generator in less than 10 seconds on a 
certain system. PractRand reports that mm32 fails the binary rank 
test [39], among other failures, after consuming 2 gibibits from 
the generator in less than 5 seconds, and gjrand reports mm32 
also fails the binary rank test consistently, among other failures, 
after consuming 8 gibibits from the generator in less than 15 
seconds. Nevertheless, the NIST SP 800-22 statistical test suite 
does not notice anything unusual with mm32 after consuming a 
total of 8 gibibits from the generator, that is, after consuming 32 
samples of 256 mebibits4 each in over 15 hours5. 

Could the NIST SP 800-22 statistical test suite reject mm32 by 
considering larger samples? It was found that 32 gibibytes of 
memory are not enough to give the NIST SP 800-22 statistical 
test suite a sample size of 2 gibibits. When the size was reduced 
to 1 gibibit, the software received a recurrent UNIX SIGSEGV 
signal. In other words, it crashes at this sample length. The same 
crash can be reproduced with various small sequence lengths, 
such as 1031 and many smaller values. Also, on sample lengths 
of sizes such as 256 mebibits, the NIST SP 800-22 statistical test 

suite is not able to properly calculate a 𝑝-value for all of its tests 
with its default parameters. It was not easy to make sense of the 

𝑝-values produced by the overlapping template matchings test 
on sample lengths such as 256 mebibits for any generator tested. 

Regarding comparisons, notice each battery in each software 
package uses a different strategy, configurable in different ways, 
which makes comparison rather difficult. For example, despite 
the fact that SmallCrush consumed a total of approximately 

3 One gibibit is 230 bits. 
4 One mebibit is 220 bits. 
5 A more efficient implementation of the NIST SP 800-22 statistical 

test suite has been reported [40], but its implementation could not be 
located. 

https://bit.ly/319bg0H
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6.7 gibibits from mm32, each test individually consumed far less. 
For example, the weight distribution test used a sample length of 
200,000 and took less than a second to run. With a generator 
producing random numbers at run time, the library by default 
decides not to restart the generator as it moves from one test to 
another. 

11. CONCLUSIONS 

Choosing a random number generator is no simple task. It 
should not be underestimated. Default pseudorandom number 
generators offered by popular programming languages usually do 
not offer enough statistical properties. It was argued that the 
NIST SP 800-22 statistical test suite, as implemented in the 
software package and last revised in 2010, is inadequate for 
testing random number generators. With crush [26], [27], 

testing a random number generator against the state-of-the-art in 
statistical tests is a trivial matter. 
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