
ACTA IMEKO
ISSN: 2221-870X
December 2020, Volume 9, Number 4, 128 - 135

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 128

On pseudorandom number generators

Daniel Chicayban Bastos1, Luis Antonio Brasil Kowada1, Raphael C. S. Machado1,2

1 Instituto de Computação, Universidade Federal Fluminense, Brasil
2 Inmetro - Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brasil

Section: RESEARCH PAPER

Keywords: randomness; random number generator; true random number generator; pseudorandom number generator; statistical tests; TestU01; NIST SP
800-22; random sequence; state-of-the-art; crush

Citation: Daniel Chicayban Bastos, Luis Antonio Brasil Kowada, Raphael C. S. Machado, On pseudorandom number generators, Acta IMEKO, vol. 9, no. 4,
article 17, December 2020, identifier: IMEKO-ACTA-09 (2020)-04-17

Section Editor: Francesco Bonavolonta, University of Naples Federico II, Italy

Received October 30, 2019; In final form May 15, 2020; Published December 2020

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was partially funded by the SHCDCiber project.

Corresponding author: Daniel Chicayban Bastos, e-mail: dbastos@id.uff.br

1. INTRODUCTION

Unfortunately, the list of past incidents involving bad random
number generation is not too modest. Bad randomness has been
with us for as long as random number generation has been in
use. Perhaps the oldest catastrophe is RANDU, from IBM’s
System/370, used in the 60s. ‘[The] very name RANDU is
enough to bring dismay into the eyes and stomachs of many
computer scientists! [...] [It] fails most three-dimensional criteria
for randomness, and it should never have been used.’ [1]

In 1996, Netscape Communications failed to properly seed
their random number generator during SSL handshaking: they
used the current timestamp and the browser’s PID and PPID.

In UNIX systems, PID means process identifier and PPID is the

process parent’s PID. In the 32-bit Linux kernel version 2.5.68, every

PID is an integer between 1 and 32767. In 64-bit systems, the value can

get up to 222, approximately 4.2 million [2].
The seed per se was computed by the MD5 hash function, but

since an adversary could have a precise measurement of the
current timestamp and the universe of possible PID numbers
was not large, it was possible to considerably reduce the set of

possible seeds available to the generator. While Netscape
thought they had 128 bits of security, they in fact had 47 bits [3].

In 2003, Taiwan launched a project offering its citizens a
smart card with which they could authenticate themselves with
the government, file taxes, etc. RSA keys were generated by the
cards using built-in hardware random number generators
advertised as having passed FIPS 140-2 Level 2 certification [4].
‘On some of these smart cards, unfortunately, the random-
number generators used for key generation are fatally flawed and
have generated real certificates containing keys that provide no
security whatsoever.’ As a result, a total of 184 distinct secret keys
were found out of more than two million 1024-bit RSA keys
downloaded from Taiwan’s national key repository [5].

In 2008, a vulnerability in OpenSSL on Debian-based
operating systems was caused by ‘a random number generator
that [produced] predictable numbers, [making] it easier for
remote attackers to conduct brute force guessing attacks against
cryptographic keys’ [6].

In 2012, a survey of TLS and SSH servers was performed [7].
The entire IPv4 space was scanned, providing a macroscopic
view of the universe of keys on the Internet. Unfortunately, many
servers were powered by malfunctioning random number

ABSTRACT
Statistical sampling and simulations produced by algorithms require fast random number generators; however, true random number
generators are often too slow for the purpose, so pseudorandom number generators are usually more suitable. But choosing and using
a pseudorandom number generator is no simple task; most pseudorandom number generators fail statistical tests. Default
pseudorandom number generators offered by programming languages usually do not offer sufficient statistical properties. Testing
random number generators so as to choose one for a project is essential to know its limitations and decide whether the choice fits the
project’s objectives. However, this study presents a reproducible experiment that demonstrates that, despite all the contributions it
made when it was first published, the popular NIST SP 800-22 statistical test suite as implemented in the software package is inadequate
for testing generators.

mailto:dbastos@id.uff.br

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 129

generators. About 5.8 million distinct TLS certificates and 6.2
million SSH distinct keys were analysed from about 10.2 million
hosts. It was found that 5.57 % of the TLS servers and 9.60 %
of the SSH servers shared keys with at least one other server.
Among TLS servers, at least 5.23 % were using default keys
generated by the manufacturer that had never been changed by
the user. It seems some 0.34 % generated the same keys as one
or more hosts due to malfunctioning random number
generators. As a result, about 64,000 (0.50 %) TLS private RSA
keys and about 108,000 (1.06 %) SSH private RSA keys were
factored by exploiting the fact that some of these keys shared a
common factor with at least one other host due to entropy
problems in random number generation.

As technology adoption advances, incidents become more
frequent. In 2013, a component of Android responsible for
generating secure random numbers contained a weakness that
rendered all Android wallets generated until then vulnerable to
theft [8], [9], [10]. In 2015, a flaw in FreeBSD’s kernel made SSH
keys and keys generated by OpenSSL vulnerable due to the
possible predictability of a random number generator [11].

It is not absurd to assume that, in the same way that smart
phones use the same libraries as servers and desktop systems,
embedded systems and others will use the same or similar
versions of these software due to their often low resource
demands, generating more security concerns as stable
implementations of verified software might be changed to fit in
with the requirements of more constrained systems.

2. TERMINOLOGY

There are at least two types of random number generators,
those called true random number generators (TRNGs) and those
called pseudorandom number generators (PRNGs). The former
is usually associated with a physical mechanism that produces
randomness by way of a physical process ‘such as the timing
between successive events in atomic decay’ [12]. A
pseudorandom number generator is often an arithmetical
procedure performed by a machine based on initial, hopefully
random, information called a seed. If a pseudorandom number
generator has enough desirable properties that it could be
recommended for cryptographic applications, then the acronym
CSPRNG is often used, meaning computationally secure
pseudorandom number generator.

3. WHAT IS A RANDOM SEQUENCE?

Looking at probability theory textbooks, one sees they require
the concept of randomness, but most expositions carefully dodge
the difficulty of precisely defining what a random sequence is,
which is required for the definition of the term ‘probability’.
Instead of making absolute assertions, the theory concerns itself
with telling how much probability should be attached to
statements involving events. In other words, the objective is to
quantify, measure and compute, not to give meaning [1]. From
the perspective of a formalist, this is not unusual, for pure
mathematics is mostly concerned with the form of statements,
not with their content, a view of pure mathematics that has been
remarkably described by Bertrand Russell [13].

Pure mathematics consists entirely of assertions to the
effect that, if such and such a proposition is true of
anything, then such and such another proposition is true of
that thing. It is essential not to discuss whether the first
proposition is really true, and not to mention what the

anything is, of which it is supposed to be true. [...] Thus
mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what
we are saying is true.

One should recognize, however, that mathematical logic is
not able to capture the whole of mathematics, as has been clear
since the advent of Gödel’s theorems. (For a precise definition
of ‘capture’, see section 4.6, page 35 of Peter Smith’s ‘An
Introduction to Gödel’s Theorems’, Cambridge University Press,
2007, ISBN: 978-0-521-85784-0.)

In the context of probability theory, if one has a random
sequence, it can be used to draw samples from a population.
Given these random samples, then ‘such and such’ deductions
can be made. ‘It is essential’ not to discuss whether the sequence
with which one began is really random. It is by hypothesis. And,
finally, it is essential not to discuss what probability really is, since
that would prompt us to discuss what randomness is. (The issue
is discussed at length by von Mises in ‘Probability, Truth and
Statistics.’ Richard von Mises, 1957. Dover Publications, Inc., 2nd
edition, 1981. ISBN: 0-486-24214-5. On page 24, von Mises
writes that ‘[t]he term “probability” will be reserved for the
limiting value of the relative frequency in a true collective which
satisfies the condition of randomness. The only question is how
to describe this condition exactly enough to be able to give a
sufficiently precise definition of a collective.’ On page 12, he
defines collective as ‘a sequence of uniform events or processes
which differ by certain observable attributes’. For example, ‘all
the throws of dice made in the course of a game form a collective
wherein the attribute of the single event is the number of points
thrown.’)

However, if a probability is measured as a number, it can then

be compared. For example, one can assert that a probability 𝑥 is

greater than a probability 𝑦, which is astoundingly useful.

Sequences that are ∞-distributed have been given serious
consideration as candidates for a definition of a random

sequence. To explain what ∞-distributivity is, it will help us to
consider the particular case of binary sequences. A binary

sequence is considered ∞-distributed if it is 𝑘-distributed for all

natural numbers 𝑘. Intuitively, a 𝑘-distributed binary sequence is

one in which the probability of a certain 𝑘-digit binary string
appearing in the sequence is the same as any other. In other

words, the sequence’s probability distribution is uniform for 𝑘-
digit binary strings.

In more precise terms, a binary sequence 𝑋𝑛 is 𝑘-distributed

for a certain 𝑘 if

Pr(𝑋𝑛𝑋𝑛+1 … 𝑋𝑛+𝑘−1 = 𝑥1𝑥2 … 𝑥𝑘) = 1/2𝑘

for all binary 𝑘-digit numbers 𝑥1𝑥2 … 𝑥𝑘. For example, a binary

1-distributed sequence must satisfy Pr(𝑋𝑛 = 0) = 1/2 as well

as Pr(𝑋1 = 1) = 1/2. One such sequence would be

0, 1, 0, 1, …, since Pr(𝑋𝑛 = 0) is the limit of the sequence

1, 1/2, 2/3, 2/4, …, which converges to 1/2 [1]. Another

example is 0, 0, 1, 1, 0, 0, 1, 1, … For a binary sequence to be 2-
distributed, it would have to satisfy

Pr(𝑋𝑛𝑋𝑛+1 = 00) = 1/4,
Pr(𝑋𝑛𝑋𝑛+1 = 01) = 1/4,
Pr(𝑋𝑛𝑋𝑛+1 = 10) = 1/4,
Pr(𝑋𝑛𝑋𝑛+1 = 11) = 1/4.

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 130

One can check that the sequence 0, 0, 1, 1, 0, 0, 1, 1, … is also 2-

distributed, but it is not 3-distributed. It is not 3-distributed

because Pr(𝑋𝑛𝑋𝑛+1𝑋𝑛+2 = 000) = 0 when it should be 1/8.
This suggests that for every periodic sequence, there is a natural

number 𝑘 such that the sequence is not 𝑘-distributed. Indeed,

every periodic sequence of period 𝑝 is not 𝑝-distributed [14]. A

periodic 3-distributed binary sequence is not easily guessed, but
one can check that the sequence

0,0,0,1, 0,0,0,1, 1,1,0,1, 1,1,0,1, 0,0,0,1, …

is indeed 3-distributed [1].
An algorithm is not limited to producing periodic sequences

– for example, an algorithm that produces the digits of 𝜋 does
not produce a periodic sequence – so the limitation of periodic

sequences is no challenge to the idea that ∞-distributivity defines

randomness. In fact, one of the formidable results of ∞-
distributed sequences is that they can be produced by algorithms:
one such algorithm was given in 1965 [14].

The weakness in taking the notion of ∞-distributivity alone
as a definition for a random sequence appears when one

considers the subsequences of an ∞-distributed sequence. If
such sequences were random, it would be expected that any
subsequence of a random sequence would also be random, but

this does not always happen with ∞-distributed sequences.

Given an ∞-distributed binary sequence 𝑋𝑛, one can construct a

new sequence 𝑌𝑛 = 𝑋𝑛 except that 𝑌𝑛2 = 0 for every index 𝑛.

Clearly, 𝑌𝑛 is not random because, by construction, 𝑌0, 𝑌1, 𝑌4,
𝑌9, … , 𝑌𝑛2 = 0, yet 𝑌𝑛 is still ∞-distributed because setting
squared elements to zero does not significantly change the

probabilities required in the definition of 𝑘-distributivity [1].

That is, ∞-distributivity alone is too weak a definition. An
apparently adequate definition is reached by making suitable
restrictions to the rules governing which subsequences must be

∞-distributed. That is, not all subsequences of an ∞-distributed

sequence 𝑋𝑛 must be ∞-distributed for 𝑋𝑛 to be qualified as
random [1]. ‘The secret is to restrict the subsequences so that

they could be defined by a person who does not look at’ 𝑋𝑛
‘before deciding whether or not it is to be in the subsequence’
[1]. To date, there does not seem to be any objection to this
strategy.

4. WHAT IS A PSEUDORANDOM NUMBER GENERATOR?

Since algorithms cannot compute random sequences [15],
they are left with at most producing pseudorandom number
sequences displaying the desired statistical properties. A
pseudorandom number generator, therefore, is an arithmetical
procedure that produces a sequence of numbers that one hopes
will pass sufficient statistical tests and thus appear random. It can

be as simple as a function 𝑓(𝑥𝑛) = 𝑥𝑛−1
2 + 1 mod 𝑁, for some

fixed natural number 𝑁 or as complex as Donald Knuth’s ‘super-
random’ number generator [1], shown as an illustration of how
complicated algorithms do not necessarily provide any more

randomness. (The function 𝑓(𝑥𝑛) = 𝑥𝑛−1
2 + 1 mod 𝑁 is

typically used in a method of integer factorisation known as
Pollard’s Rho. One interesting fact about the method is that,

while polynomials like 𝑓 do not have good statistical properties,
the average number of steps taken by the procedure would
considerably increase if a truly random sequence were used
instead [16]. Sometimes true randomness is not desired.)

For illustration purposes, let us look at what a simple
pseudorandom number generator looks like in the C
programming language.

uint32_t y = 2463534242U; /* the seed */

uint32_t xorshift(void) {

 y = y ^ (y << 13);

 y = y ^ (y >> 17);

 y = y ^ (y << 5);

 return y;

}

This is George Marsaglia’s Xorshift generator of 32 bits [17].

The variable y is a global variable in the xorshift procedure.
The letter U at the end of the seed is just an indicator that that
number is an unsigned integer. What this procedure does
is multiply the arbitrarily set initial value 2463534242, the seed,

to the number 213 and add the result to y; that is, it adds the
product to the initial value. The multiplication is done in fast
computer arithmetic, namely, shifting y to the left by 13 bits
because, in base 2 arithmetic, shifting a number to the left means
adding zeros to the right of the number, which is the same as
multiplying it by a power of 2. For example, by taking the number
5, which is 101 in base 2, and multiplying it by 2, one gets 10,

which is 1010 in base 2. The second step divides y by 217 and
adds the result to y. The last step is similar. All such

computations are reduced modulo 232. (ANSI X3.159-1989
asserts in section 3.1.2.5 that ‘[a] computation involving unsigned
operands can never overflow, because a result that cannot be
represented by the resulting unsigned integer type is reduced
modulo the number that is one greater than the largest value that
can be represented by the resulting unsigned integer type’.)
Looking at the numbers produced by this generator, they appear
random to the naked eye, but the sequence does not pass even a
modest contemporary battery of statistical tests.

5. DESIRABLE PROPERTIES OF GENERATORS

True random number generators have several disadvantages
compared to a good pseudorandom number generator. For
example, they are slower, more cumbersome to install and run,
more costly and unable to reproduce the same sequence twice.
(Reproducing the same sequence is important for repeating
simulations and testing applications.) But a pseudorandom
number generator does need a good seed, which true random
number generators can provide [12].

When choosing a pseudorandom number generator, one
must know what to look for. Some of the properties one can find
in pseudorandom number generators, to name a few, are good
statistical properties, good mathematical foundations, lack of
predictability, cryptographic security, efficient time and space
performance, small code size, a sufficiently long period and
uniformity [18].

In the context of computer-generated randomness, good
statistical properties are effectively what is meant by ‘random’
[18]. Mathematical foundations allow us to be sure a
pseudorandom number generator has some desirable property,
such as its period, which is defined as the length of the sequence
of random numbers the generator can produce before needing
to repeat itself. Having a long period is surely desirable.
Uniformity is a property closely related to the period. After the
generator has output all its period, each number produced should
occur the same number of times, otherwise it is not uniform. If
it is not uniform, it is biased. Uniformity alone, without a long

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 131

period, is certainly not desirable. Consider what happens as a
uniform generator is consumed. As the end of its period draws
near, its uniformity effectively allows one to predict more and
more of its output, since all output must occur the same number
of times [18].

For example, let us consider a case where we can
show that a generator must lack uniformity in its

output. Consider a generator with 𝑏 bits of state, but

where one of the 2𝑏 possible states is never used,
(perhaps because the implementation must avoid an
all-bits-are-zero state). The missing state would leave

the generator with a period of 2𝑏 − 1. By the
pigeonhole principle, we can immediately know that

it cannot uniformly output 2𝑏 unique 𝑏-bit values.

So, the period of a generator cannot be too short, lest it repeat
itself while in use, which makes it statistically unsound. A large
internal state implies the possibility of a longer period because it
allows for more distinct states to be represented. Yet, in terms of
period size, more is not always better. For example, if one is to

choose between generators with period sizes of 2128 and 2256,
one should notice that it would take billions of years to exhaust

the period of the 2128 generator, so picking the generator with

period 2256 does not bring a relevant advantage. ‘Even a period

as “small” as 256 would take a single CPU core more than two
years to iterate through at one number per nanosecond.’ [18]

Another valuable property is unpredictability. ‘A die would
hardly seem random if, when I’ve rolled a five, a six, and a three,
you can tell me that my next roll will be a one.’ [18] Still,
pseudorandom number generators are deterministic, and their
behaviour is completely determined by their input: they produce
the same sequence given the same input. So, their randomness is
only apparent to an observer who does not know their initial
conditions. Though the deterministic nature of pseudorandom
number generators might seem more like a weakness than a
strength, it is valuable for reproducing the same sequence
multiple times, which is required in a number of applications,
from simulations and games to the mere testing of programs. To
repeat a sequence generated by a pseudorandom number
generator, one needs only save its initial conditions, usually just
the seed for the produced sequence. To repeat a sequence from
a true random number generator, the entire produced sequence
would have to be saved.

It is not immediately obvious that a procedure computed by
a machine can be unpredictable, but some pseudorandom
number generators output a number while keeping another one
hidden from the user. The hidden information is called the
pseudorandom number generator’s internal state. Predicting the
pseudorandom number generator entails knowing the internal
state.

Unpredictability is important for applications concerned with
security because predicting a pseudorandom number generator
allows for various types of attacks, including denial of service
[19]. If a pseudorandom number generator leaks internal state
information at each output, an adversary is able to little by little
infer the complete internal state, at which point the generator
becomes completely predictable, at least from that point in the
sequence on, which is a flaw of Mersenne Twister [20].

Predictability can be considered in two directions: forwards
and backwards. A generator is said to be invertible if, once its
internal state is known, the random numbers it generated

previously can be recovered. Being non-invertible is vital for
applications that generate cryptographic keys; if the generator is
invertible and its internal state is exposed at some point in time,
adversaries will be able to recover all previously generated keys.
So, cryptographically secure pseudorandom number generators
are not invertible. Although some applications may not be
designed with cryptography in mind, it is prudent to pick the
safest generator that a project can afford [18].

[Because] we cannot always know the future contexts
in which our code will be used, it seems wise for all
applications to avoid generators that make
discovering their entire internal state completely
trivial.

Speed is another important property, particularly when
considering low resource systems. An application that is too
dependent on a random number generator will be as slow as the
generator used. Applications running in low-resource hardware
will likely trade other properties for speed and space. Many
generators with good statistical properties are slow, but there are
some generators that have relatively good time performance
while showing acceptable statistical properties. For example,
XorShift* 64/32 [17] has good performance and good
statistical properties [18], although it is not safe for cryptographic
applications.

Most generator implementations will take just a constant
amount of memory to store their state, but considering the strict
constraints some applications face, the size of these constants
should also lead programmers to choose one over another. Space
is also related to speed: considering all other things to be equal,
a generator that is able to keep its internal state completely within
a processor register should outperform a competitor that needs
many more bytes of internal state to be kept in main memory
[18].

There are also the space constraints of code size. Such space
is most likely a constant, but constants do matter for applications
running in low-resource hardware. The longer the code, the more
likely it will include programming errors. Such errors can be
particularly difficult to detect in the context of random number
generators [18].

From […] experience, I can say that implementation
errors in a random number generator are challenging
because they can be subtle, causing a drop in overall
quality of the generator without entirely breaking it.

Another desirable property is seekability, the ability of a
generator to skip ahead or jump back in the sequence. Since
pseudorandom number generators are cyclic, by skipping a
sufficient number of elements, one can get back to the starting
number, meaning that the ability to seek ahead also implies the
ability to seek backwards. Computationally secure
pseudorandom number generators are designed not to be
seekable, as it is not desirable to let an adversary read the
sequence backwards, discovering which numbers might have
been used in the past.

6. STATISTICAL HYPOTHESIS TESTING

Statistical theory allows us to posit a hypothesis 𝐻0 about a
random number generator and devise tests to provide empirical

evidence of the validity of 𝐻0. These tests, in turn, either give us

more confidence in the hypothesis 𝐻0 or leads us to reject it. A

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 132

statistical test for a random number generator is defined by a

random variable 𝑋 whose distribution under 𝐻0 can be well

approximated. When 𝑋 takes the value 𝑥, define

𝑝𝑅 = Pr(𝑋 ≥ 𝑥 | 𝐻0) and 𝑝𝐿 = Pr(𝑋 ≤ 𝑥 | 𝐻0) as the left and

right 𝑝-value, respectively. Such 𝑝-values measure how likely it is
to find a certain sample of the random number generator given

𝐻0 is true. If it turns out that very unlikely samples occur from
the random number generator, that is then strong evidence the

hypothesis 𝐻0 is not true. In fact, when testing random number

generators, if either the right or left 𝑝-value is extremely close to

zero, then 𝐻0 should be rejected. If a suspicious 𝑝-value is

obtained, say near 10−2 or 10−3, one can repeat the particular
test a few more times, perhaps with a larger sample size, in the
hope that more tests will clarify the result [12].

In the context of testing for randomness, 𝐻0 is usually taken
to mean that the sequence is random. For each specific test, a

rule must be derived that allows one to reject or not to reject 𝐻0.

Taking 𝐻0 to mean that the sequence generated is random, the
test produces a statistic with a certain probability distribution of
possible values. This probability distribution must be determined
by mathematical methods. From this distribution, a critical value
is chosen such that a critical region in the set of possible values
is determined. The statistic is then computed from the sample
and compared to the critical value. If the statistic falls in the

critical region, 𝐻0 is rejected; that is, one concludes the sequence

produced by the generator is not random. Otherwise, 𝐻0 is not
rejected. If the generator produces a random sequence, then the
computed statistic will have a very low probability of falling in
the critical region, and if such an event occurs systematically, it
provides strong evidence that the sequence is not random as

assumed in 𝐻0.
Although the probability for such an event may be very low,

it is not null. Incorrectly classifying a sequence produced by a
generator as not random is called a type I error. Much worse

would be if 𝐻0 is not rejected when the sequence produced by
the generator is not random, an error that is called type II.

The probability of type I error is usually denoted by 𝛼 and is
called the level of significance of the test. The probability of type

II error is usually denoted by 𝛽. The value of 𝛼 can be arbitrarily
chosen; that is, if a specific probability of type I error is desired,

say 1 %, one can set 𝛼 = 0.01 for the specific test. Doing the
same for type II error is not so easy. Recall that the probability
distribution for the statistic produced by the test was determined
assuming the generator does indeed produce a random sequence,

that is, assuming 𝐻0 is true. In the case of type II error, 𝐻0 is not
true, so the probability distribution of the statistic test is not

known. Unless this probability distribution is known, 𝛽 is not a
fixed value because there is an infinite number of ways that a
sequence can be non-random. Each different way determines a

different 𝛽.

7. THE STATE-OF-THE-ART IN STATISTICAL TESTS

Under the framework of hypothesis testing, a series of tests
can be devised to analyse samples of the random number
generator. There is no maximum number of tests one can apply
to a random number generator, and there is no maximum
number of tests a random number generator can pass that will
prove it to be truly random. It is also not possible to build an
algorithmic random number generator that passes all statistical
tests [12]. Nonetheless, the more tests one applies to a random

number generator, the more confident one becomes of its
quality.

Perhaps the first battery of tests was devised by Donald
Knuth in 1969 [1]. In 1996, given the insufficiency of Knuth’s
tests, George Marsaglia published DIEHARD [21]. To
supersede Marsaglia’s tests, NIST, in the United States, published
its own battery [22] in the year 2000, with its latest revision in
2010. Robert Brown published DieHarder in 2004. In 2007,
Pierre L’Ecuyer and Richard Simard published TestU01, a C
library with which C programmers can implement and test
random number generators [23]:

… empirical testing of random number generators is very
important, and yet no comprehensive, flexible, state-of-the-
art software is available for that, aside from the one we are
now introducing. The aim of the TestU01 library is to
provide a general and extensive set of software tools for
statistical testing of random number generators. It
implements a larger variety of tests than any other available
competing library we know. [...] TestU01 was developed
and refined during the past 15 years and beta versions have
been available over the Internet for a few years already. It
will be maintained and updated on a regular basis in the
future.

TestU01’s results were ‘sobering’ [14] for many ‘respectable’ and
well-known random number generators [18]:

[Pierre L’Ecuyer and Richard Simard] made a very
significant contribution to the world of random-number–
generator testing when they created the TestU01 statistical
test suite. Other suites, such as [DIEHARD], had existed
previously, but TestU01 (which included a large number of
previously independently published tests, and applied them
at scale) vastly increased the scope and thoroughness of the
testing process.

The library comes with three predefined test batteries:
SmallCrush, the small one, Crush, the medium-sized one and
BigCrush. SmallCrush is the quickest, and it should finish in
under a minute on most modern desktop computers. Crush can
take a few hours, and BigCrush takes many hours or perhaps a
day.

As for alternatives to TestU01, two other packages are
competitors: PractRand 0.94 [24] and gjrand 4.2.1 [25], but
neither has been formally published.

8. A NOTE ON USING THE TESTU01 LIBRARY

An inconvenience of TestU01 is that it is restricted to the C
programming language. It is a C library, after all; it cannot run
unless a programmer writes a program that takes advantage of
the library. Besides, given that TestU01 is written in C, it would
not be straightforward to use it from another programming
language, as one would have to know how to access a C library
from within the chosen programming language.

This inconvenience has been mitigated by crush [26], [27], a
program capable of testing a random number generator against
any of the three TestU01 batteries, given the data is available on
a file on a disk or can be produced at run time. For example,
suppose one would like to test one’s local /dev/urandom
against the largest TestU01 battery. It suffices to say to the shell:

%crush --battery big --name xyz < /dev/urandom

...

%

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 133

Similarly, if one has a program p that can produce its allegedly
random data to the standard output in binary format, then
crush can test such data against the small TestU01 library with
a command such as:

%./p | crush --battery small --name my-prng

...

%

Due to the facilities of a UNIX-like system1, crush

eliminates the need to use the C programming language to take
advantage of TestU01’s default batteries.

9. A NOTE ON DEFAULT RANDOM NUMBER GENERATORS

If one is writing a new application that needs a random
number generator, one should not just use random number
generators offered by the system or by the chosen programming
language. Most programming languages have adopted flawed
generators. Java, for example, offers the package
java.Util.Random, which is based on the pseudorandom
number generator drand48. It failed five tests in SmallCrush
in less than a minute [27].

The default pseudorandom number generator in both Python
and PHP is mt19937, Mersenne Twister [20]. It passes
SmallCrush, but actually fails the linear complexity test, which
is not included in TestU01 even though it is a quick test to run
and could have been part of the small battery. The number 19937
in Mersenne Twister’s name is due to its huge period of size

219937 − 1. Despite having been a promising pseudorandom
number generator, mt19937 can be totally predicted after
collecting a sample of size 624 [18].

In C++, besides mt19937, the standard library also offers
minstd and ranlux24, two well-known generators, but
minstd fails 9 tests out of 15 of the small battery, and ranlux
is not much better [23]. C++ does offer, however, ranlux48,
which passes BigCrush and can be used by applications that
can afford the higher cost of such generator.

Exceptionally, some programming languages offer good
random number generators as the default option. For example,
the default pseudorandom number generator in the Racket
programming language from the Lisp family is Pierre L’Ecuyer’s
mrg32k3a [28], which passes BigCrush [23].

For applications that require cryptography, a well-known
computationally secure pseudorandom number generator is
based on the stream cipher ChaCha20 [29]. ChaCha20 has
replaced RC4 in OpenBSD starting at version 5.4, in NetBSD in
version 7.0 and replaced SHA-1 in the Linux kernel since version
4.8. These events present evidence that ChaCha20 is currently
well regarded.

10. ON THE INSUFFICIENCY OF THE NIST SP 800-22 SUITE

Notwithstanding the ‘sobering’ results of TestU01 [23], [18],
it is not hard to find publications ignoring it [30], [31], [32] while
giving attention to the software package provided by NIST SP
800-22. Enough flaws of this test suite have been previously
reported [33]-[37], but we will now present one more result

1 Notice Windows is sufficiently UNIX-like for the purposes of

running crush, and a Win32 binary is available on crush’s homepage
at https://bit.ly/319bg0H.

2 In PractRand version 0.94, the implementation is found in

src/RNGs/other/fibonacci.cpp.

regarding the insufficiency of the NIST SP 800-22 statistical test
suite implementation.

It is known that the Fibonacci sequence is not satisfactorily
random to operate as a random number generator, but a ‘much
better’ variation was proposed in 1958 by G. J. Mitchell and D.
P. Moore, though it was never published. Using an output of 32-
bit integers, let us call mm32 this pseudorandom number
generator defined by the sequence

𝑋𝑛 = (𝑋𝑛−24 + 𝑋𝑛−55) mod 𝑚

where 𝑛 ≥ 55, 𝑚 is even, and 𝑋0, 𝑋1, … , 𝑋54 are arbitrary
integers not all even. The constants 24 and 55 were chosen so
that the least significant bits of the sequence, that is the sequence

𝑋𝑛 mod 2, will have a period of length 255 − 1, implying the

sequence 𝑋𝑛 must also have a period of the same length [1].
Despite mm32’s period length, ‘it is difficult to recommend [it]

wholeheartedly [because] there is still very little theory to prove
that [it does or does not] have desirable randomness properties;
essentially all we know for sure is that the period is very long, and
this is not enough.’ [1] That is, from a theoretical perspective,
very little is known about mm32, but, assuming TestU01 has a
correct implementation of the statistical tests included in its
batteries and PractRand implements mm32 correctly2, statistical
evidence suggests mm32 does not have desirable randomness
properties.

Setting mm32 with an initial value of 0 in PractRand’s
implementation and submitting it to the battery SmallCrush in
TestU01, the battery reports that mm32 fails the gap test [1] and
the weight distribution test [38] after consuming approximately
6.7 gibibits3 from the generator in less than 10 seconds on a
certain system. PractRand reports that mm32 fails the binary rank
test [39], among other failures, after consuming 2 gibibits from
the generator in less than 5 seconds, and gjrand reports mm32
also fails the binary rank test consistently, among other failures,
after consuming 8 gibibits from the generator in less than 15
seconds. Nevertheless, the NIST SP 800-22 statistical test suite
does not notice anything unusual with mm32 after consuming a
total of 8 gibibits from the generator, that is, after consuming 32
samples of 256 mebibits4 each in over 15 hours5.

Could the NIST SP 800-22 statistical test suite reject mm32 by
considering larger samples? It was found that 32 gibibytes of
memory are not enough to give the NIST SP 800-22 statistical
test suite a sample size of 2 gibibits. When the size was reduced
to 1 gibibit, the software received a recurrent UNIX SIGSEGV
signal. In other words, it crashes at this sample length. The same
crash can be reproduced with various small sequence lengths,
such as 1031 and many smaller values. Also, on sample lengths
of sizes such as 256 mebibits, the NIST SP 800-22 statistical test

suite is not able to properly calculate a 𝑝-value for all of its tests
with its default parameters. It was not easy to make sense of the

𝑝-values produced by the overlapping template matchings test
on sample lengths such as 256 mebibits for any generator tested.

Regarding comparisons, notice each battery in each software
package uses a different strategy, configurable in different ways,
which makes comparison rather difficult. For example, despite
the fact that SmallCrush consumed a total of approximately

3 One gibibit is 230 bits.
4 One mebibit is 220 bits.
5 A more efficient implementation of the NIST SP 800-22 statistical

test suite has been reported [40], but its implementation could not be
located.

https://bit.ly/319bg0H

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 134

6.7 gibibits from mm32, each test individually consumed far less.
For example, the weight distribution test used a sample length of
200,000 and took less than a second to run. With a generator
producing random numbers at run time, the library by default
decides not to restart the generator as it moves from one test to
another.

11. CONCLUSIONS

Choosing a random number generator is no simple task. It
should not be underestimated. Default pseudorandom number
generators offered by popular programming languages usually do
not offer enough statistical properties. It was argued that the
NIST SP 800-22 statistical test suite, as implemented in the
software package and last revised in 2010, is inadequate for
testing random number generators. With crush [26], [27],

testing a random number generator against the state-of-the-art in
statistical tests is a trivial matter.

REFERENCES

[1] D. Knuth, The Art of Computer Programming, volume 2, 3rd
edition, Addison-Wesley, Boston, 1997, ISBN: 978-0-201-89684-
8.

[2] Linux Programmer’s Manual, 2017, See ‘man 5 proc’.
[3] I. Goldberg, D. Wagner, Randomness and the Netscape browser,

Dr Dobb’s Journal-Software Tools for the Professional
Programmer 21(1) (1996) pp. 66-71.

[4] National Institute of Standards and Technology (NIST), Security
requirements for cryptographic modules, Federal Information
Processing Standards Publication (FIPS PUB) 140-2 (May 2001).
Online [Accessed 29 October 2020].
https://goo.gl/a0Sze

[5] D. J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou,
N. Heninger, T. Lange, N. Van Someren, ‘Factoring RSA keys
from certified smart cards: Coppersmith in the wild’, in: Advances
in Cryptology – ASIACRYPT 2013. K. Sako, P. Sarkar (editors).
Springer, Berlin, Heidelberg, 2013, ISBN 978-3-642-42044-3, pp.
341-360.

[6] A Debian weak key vulnerability. CVE-2008-0166 (2008).
[7] N. Heninger, Z. Durumeric, E. Wustrow, J. A. Halderman,

Mining your Ps and Qs: Detection of widespread weak keys in
network devices, 21st USENIX Security Symposium 2012,
Bellevue, USA, pp. 205-220.

[8] Bitcoin.org, Android security vulnerability Alert Notice, 11 August
2013. Online [Accessed 29 October 2020].
https://goo.gl/zK1Hpm

[9] K. Michaelis, C. Meyer, J. Schwenk, Randomly failed! the state of
randomness in current Java implementations, in: Topics in
Cryptology – CT-RSA 2013. LNCS, vol. 7779. E. Dawson
(editor). Springer, Heidelberg, 2013, 978-3-642-36095-4_9, pp.
129-144.

[10] S. H. Kim, D. Han, D. H. Lee, Predictability of Android
OpenSSL’s pseudo random number generator, Proceedings of the
ACM SIGSAC Conference on Computer & Communications
Security, ACM, 2013, Berlin, Germany, pp. 659-668.

[11] J.-M. Gurney, URGENT: RNG broken for the last four months
(2015). Online [Accessed 29 October 2020].
https://goo.gl/KtQhD5

[12] P. L’Ecuyer, ‘Random number generation’, in: Handbook of
Computational Statistics. J. Gentle, W. K. Härdle, Y. Mori
(editors). Springer Berlin, Heidelberg, 2012, ISBN 978-3-642-
21550-3, pp. 35-71.

[13] B. Russell, Mysticism and Logic and other Essays, 2nd edition,
George Allen & Unwin LTD, London, 1917.

[14] D. Knuth, Construction of a random sequence, BIT 5 (1965), pp.
246-250.

[15] M. Sipser, Introduction to the Theory of Computation, 3rd
international edition, CENGAGE Learning, 2013, ISBN 978-1-
133-18781-3.

[16] D. Chicayban Bastos, Uma versão quântica do algoritmo Rô de
Pollard (master’s thesis), Universidade Federal Fluminense,
Niterói, 2019.

[17] G. Marsaglia, Xorshift rngs, Journal of Statistical Software 8(14)
(2003), pp. 1-6.

[18] M. E. O’Neill, PCG: A family of simple fast space-efficient
statistically good algorithms for random number generation,
Technical Report HMC-CS-2014-0905, Harvey Mudd College,
Claremont, CA, 2014.

[19] S. A. Crosby, D. S. Wallach, Denial of service via algorithmic
complexity attacks, USENIX Security Symposium, 2003,
Washington, DC, USA, pp. 29-44.

[20] M. Matsumoto, T. Nishimura, Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator, ACMT Transactions on Modeling and Computer
Simulation (TOMACS) 8(1) (1998) pp. 3-30.

[21] G. Marsaglia, DIEHARD, a battery of tests for random number
generators, CD-ROM, 1996.

[22] L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert,
D. L. Banks, A statistical test suite for random and pseudorandom
number generators for cryptographic applications, NIST, Special
Publication 800-22 Rev 1a, 2010.

[23] P. L’Ecuyer, R. Simard, TestU01: a C library for empirical testing
of random number generators, ACM Transactions on
Mathematical Software (TOMS) 33(4) (2007) p. 22.

[24] C. Doty-Humphrey, PractRand, 2018. Online [Accessed 29
October 2020].
https://goo.gl/HwU9g5

[25] G. Johnson, gjrand, 2014. Online [Accessed 29 October 2020].
https://goo.gl/2AxRWu

[26] D. Chicayban Bastos, L. A. Brasil Kowada, R. C. S. Machado,
Measuring randomness in IoT products. II Workshop on
Metrology for Industry 4.0 and IoT, 2019, Naples, Italy, pp. 466-
470.

[27] D. Chicayban Bastos, L. A. Brasil Kowada, Medindo a qualidade
de geradores de números aleatórios, IV Workshop sobre
Regulação, Avaliação da Conformidade, Testes e Padrões de
Segurança, 2019, Campinas, Brazil.

[28] P. L’Ecuyer, R. Simard, E. Jack Chen, W. D. Kelton, An object-
oriented random-number package with many long streams and
substreams, Operations Research 50(6) (2002) pp. 1073-1075.

[29] D. J. Bernstein, ChaCha, a variant of Salsa20, Workshop Record
of SASC 8 (2008) pp. 3-5.

[30] K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida,
A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, P. Davis,
Fast random bit generation with bandwidth-enhanced chaos in
semiconductor lasers, Opt. Express 18 (2010) pp. 5512-5524.

[31] M. A. Zidan, A. G. Radwan, K. N. Salama, Random number
generation based on digital differential chaos, IEEE 54th
International Midwest Symposium on Circuits and Systems
(MWSCAS), 2011, Seoul, South Korea, pp. 1-4.
DOI: https://doi.org/10.1109/mwscas.2011.6026266

[32] M. Stipcevic, Ç. K. Koç, ‘True random number generators’, in:
Open Problems in Mathematics and Computational Science.
Ç. K. Koç (editor). Springer, 2014, ISBN 978-3-319-10682-3, pp.
275-315.

[33] S. Zhu, Y. Ma, J. Lin, J. Zhuang, J. Jing, ‘More powerful and
reliable second-level statistical randomness tests for NIST SP 800-
22’, in: Advances in Cryptology, ASIACRYPT 2016. Lecture
Notes in Computer Science, vol 10031. J. Cheon, T. Takagi
(editors). Springer, Berlin, Heidelberg, 2016, ISBN 978-3-662-
53886-9, pp. 307-329.

[34] Song-Ju Kim, K. Umeno, A. Hasegawa, Corrections of the NIST
statistical test suite for randomness, arXiv preprint nlin/0401040
(2004).

https://goo.gl/a0Sze
https://goo.gl/zK1Hpm
https://goo.gl/KtQhD5
https://goo.gl/HwU9g5
https://goo.gl/2AxRWu
https://doi.org/10.1109/mwscas.2011.6026266

ACTA IMEKO | www.imeko.org December 2020 | Volume 9 | Number 4 | 135

[35] F. Pareschi, R. Rovatti, G. Setti, On statistical tests for
randomness included in the NIST SP800-22 test suite and based
on the binomial distribution, IEEE Transactions on Information
Forensics and Security 7(2) (2012) pp. 491-505.

[36] K. Hamano, The distribution of the spectrum for the discrete
Fourier transform test included in SP800-22, IEICE Transactions
on Fundamentals of Electronics, Communications and Computer
Sciences 88(1) (2005) pp. 67-73.

[37] K. Hamano, T. Kaneko, Correction of overlapping template
matching test included in NIST randomness test suite, IEICE
transactions on fundamentals of electronics, communications and
computer sciences 90(9) (2007) pp. 1788-1792.

[38] M. Matsumoto, Y. Kurita, Twisted GFSR generators, ACM
Transactions on Modeling and Computer Simulation (TOMACS)
2(3) (1992) pp. 179-194.

[39] G. Marsaglia L.-H. Tsay, Matrices and the structure of random
number sequences, Linear Algebra and its Applications 67 (1985)
pp. 147-156.

[40] A. Suciu, K. Marton, I. Nagy, I. Pinca, Byte-oriented efficient
implementation of the NIST statistical test suite. International
Conference on Automation, Quality and Testing, Robotics, 2010,
Cluj-Napoca, Romania, pp. 1-6.
DOI: https://doi.org/10.1109/AQTR.2010.5520837

https://doi.org/10.1109/AQTR.2010.5520837

