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1. INTRODUCTION 

The convoying scenario is one of the most important tasks 
in modern robotics. A mobile robot autonomously following a 
leader can be widely used in such areas as agriculture, 
transportation, and the military. Many well-known international 
trials, such as ELROB, include this scenario either as an 
independent one or as a part of a more complex scenario. 

The scenario is focused on the mobile robot autonomously 
following some leader, which can be either a human operator or 
another vehicle – either autonomous or remote-controlled. To 
detect the leader, different systems can be used, including 
GNSS systems [1], [2], video and infrared cameras [3]-[7], 
LiDARs [8]-[10], directional antennas [11], radars, ultrasonic 
rangefinders [12]-[14], and their combinations [15], [16]. The 
nature of these systems, however, can impose various 
restrictions on the conditions of their use. GNSS systems 
perform poorly in urban areas and inside buildings. LiDARs 
and radars can be used to measure the distance between the 
vehicle and the surrounding objects, but it is not an easy task to 
detect the leader based on range data. Cameras, both video and 
infrared, can help with leader detection but depend greatly on 
environmental conditions. Moreover, if the obstacle appears 

between the leader and the robot, the accuracy of their relative 
positions’ estimate can be severely decreased.  

The mathematical methods used for localisation, obstacle 
detection, and occupancy grid mapping are not reliable enough 
to build a robust convoying system. Such methods usually 
require a redundant sensor data of a different nature. The leader 
detection suffers from the same constraints and, to make things 
even more difficult, the rough weather conditions, dense 
vegetation, smoke, and other factors should also be considered.  

In section 2, we discuss the implementation of an ultrasonic-
based leader detection system that consists of an active beacon 
carried by the leader and a set of several ultrasonic receivers 
mounted on the convoyed robot. In section 3, different 
methods of computing the estimate of the beacon’s position are 
described. Conclusions of this study, experimental results, and 
dynamic errors for all methods are illustrated in section 4. 
Finally, recommendations for future work are given in the last 
section. 

2. THE APPROACH 

In this article, we propose an ultrasonic-based leader 
detection system that includes an active beacon carried by the 
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leader and a set of N  ultrasonic receivers mounted on the 

convoyed robot (Figure 1). 
The active beacon transmits the ultrasonic waves with 

constant time intervals between the waves. At the same time 
that the ultrasonic wave is sent, the radio frequency wave 
marking the beginning of the measurement cycle is also 

transmitted. For the each of the N  receivers, the time interval 

between the moment of the radio frequency wave and 
ultrasonic wave arrivals is measured according to the time-of-
flight principle. These intervals are proportional to the distances 
between the beacon and the respective receivers and can be 

calculated as n nr c= , n 1, , N= , where c is the speed of the 

ultrasound in the air, and n  is the time interval measured for 

the thn  receiver.  

To estimate the beacon’s coordinates in the robot’s local 

coordinate system, the system of N  nonlinear equations is 

solved. 

2 m 2 m 2 m 2
n n n nr ( x x ) ( y y ) ( z z )= − + − + − ,  (1) 

where n 1, , N= ,
Tm m mu x y z =

 
 is a vector 

containing the coordinates of the beacon, and  
T

n n nx y z  

are the coordinates of the nth receiver in the convoyed robot’s 
local coordinate system.  

During the system operation, an obstacle can cause line-of-
sight loss between one or several receivers and the beacon. 
Moreover, the ultrasonic wave can be reflected by the 
surrounding objects, causing the problem of multipath 
propagation. For these reasons, acquired measurements can 

contain artefact distances nr  (Figure 2(a)), which are identified 

using the threshold constant p. The distance measurement n ,kr  

is considered an artefact if the following condition is met: 

n,k n,k 1r r −−  ,  (2) 

where p is an adjustable threshold constant, and k  is the 

consequent measurement number.  
If the artefact is detected, the linear least squares 

extrapolation is used to calculate the substitute estimate based 

on the last V  estimates  n,k 1 n,k Vr , ,r− − . 

If the series of M artefacts is detected in the receiver’s 

measurements, or the substitute estimate cannot be calculated 

due to the unreliable measurements present in the last V
estimates, the corresponding equations are excluded from the 
system (1). When the reliable measurements (i.e. condition (2) is 
not met for the two consecutive measurements) arrive, the 
receiver is included back in the system (1), and the artefact 
removal procedure becomes applicable again. The system must 
contain at least three reliable measurements from different 

receivers to calculate the beacon’s position estimate u . If there 

are not enough reliable measurements available, the robot stops 
until the beacon’s position can be calculated again. 

To make more robust measurements, each receiver contains 
two independent measurement channels with partly overlapping 
beam patterns and automatic gain control. If both channels 
succeeded at the distance measurement at some moment of 

time k , then the average value is used as a resulting 

measurement. If one of the channels failed to provide a 
measurement, then the over channel’s measurement is used as a 
resulting measurement.  

3. POSITION ESTIMATION 

Many of the effective estimation methods are based on the 
linear models and use normally distributed values. Figure 2b 
and 2c show the histograms of centred values for the measured 

distances nr  between the beacon and the thn  receiver with the 
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Figure 1. (a) The active beacon and the receiver array mounted on the 

mobile robot (b) Convoying scenario with the two robots. 
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Figure 2. Histogram of centered values for the single receiver’s 
measurements: a – measurement series containing artifacts, b – 11 meter 
distance between the beacon and the receiver, c – 3 meter distance 
between the beacon and the receiver. 
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beacon positioned along the axis of the receiver’s beam pattern 
at a distance of 11 and 3 metres respectively. Clearly, the 

histograms are multimodal, with the constant distances c   

between the modes, where   is the period of ultrasound. 

Since the envelope’s shape can be approximated with the 

Gaussian function, we can assume that the distances nr  are 

distributed normally, with the variance depending on the 
beacon’s position.  

We can use a linear combination of the equations to 
transform the nonlinear equations of (1) into the linear ones 
[17]. For each pair of receivers, the difference of the squared 
distances to the beacon is calculated as follows: 

2 2 m 2 m 2 m 2
i j i i i

m 2 m 2 m 2
j j j

r r ( x x ) ( y y ) ( z z )

( x x ) ( y y ) ( z z ) ,

− = − + − + − −

− − − − −
  

where i , j 1, , N= , i j , 
2
NC  – binomial factor, 

2
NL C=  – 

the number of receiver combinations. 
As a result, system (1) can be written in the form of the 

linear system 

Bu g= ,  (3) 

where B  is the system matrix, with L  rows containing 

j i j i j i2( x x ) 2( y y ) 2( z z ) − − −  , and g  is the column 

vector of L  constant terms 

( )2 2 2 2 2 2 2 2
i j j i j i j ir r x x y y z z− + − + − + − , i , j 1, , N= , i j . 

Generally, the system (3) is inconsistent due to the 
measurement noise. Hence, to estimate the position of the 
beacon, the least squares method can be used: 

( )
1T Tu B B B g.
−

=  

To compute the estimate u  of the beacon’s position, 

different methods can be used; therefore, several estimates were 
computed in the course of this research. During the research, 

the receiver array of N 4=  receivers was used; therefore, the 

system (3) contains 
2
4L C 6= =  equations. 

3.1. Least squares method with exponential smoothing  

( )s s
k k k 1u u 1 u  −= + − , ( )0;1 ,  (4) 

where   is the adjustable smoothing factor. 

3.2. Kalman filter with the non-stationary measurement noise 
matrix 

The overall filter design is undertaken according to [18]. The 
stochastic system model can be described as follows: 

k 1 k k

k k k

x Ax ,

g Cx ,





+
 = +


= +
,  (5) 

where 
Ty zm m m x

k k k k k k kx x y z v v v =
 

 is the state vector 

containing the beacon’s coordinates and velocity components; 

1 0 0 t 0 0

0 1 0 0 t 0

0 0 1 0 0 t
A

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 

 
=  
 
 
 
 

 is the stationary transition 

matrix of the dynamic model, where t  is the time interval 

between the consecutive measurements; 
T

k 1,k L ,kg g g=     is the measurement vector;  

C  is the stationary measurement model, with L  rows 

j i j i j i2( x x ) 2( y y ) 2( z z ) 0 0 0 − − −  , 

i , j 1, , N= , i j ;  

y zx
k k k k0 0 0 a a a  =

 
 is process noise,  

~ℕ(
 
|
 
0⃗ 

 
);  

( )2 2 2
a a aQ diag 0,0,0, , ,  =  is the stationary process noise 

covariance matrix;  

kP  is the covariance matrix of the state; 

k  is the observation noise vector, ~ℕ(  | 0⃗  );  

kR  is the non-stationary measurement noise covariance 

matrix. To estimate the measurement noise covariance [19], we 
assume that  

T T T
k k k k kE s s E CP C    = −

    ,  

where k k ks g Cx= −  is residual, when 

0

k
k T T

d d k

d k D

R , k D,

R 1
s s CP C , k D,

D = −




= 
+ 




 

D  is the estimation window size. 
The initial state vector is assumed to be 

Tm m m
0 0 0 0x x y z 0 0 0 =

 
,  
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1T T
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−
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where ( )
T 1m m m T T

0 0 0 0x y z B B B g
−

  =
 

.  

The posteriori error covariance matrix and the measurement 
noise covariance matrix are written as 

( )2 2 2 2 2 2
0 u u u v v vP diag , , , , ,     =  and 

2 2
0 g g

L

R diag , ,  =
 
 

 respectively. 

3.3. Rauch-Tung-Striebel smoother 

The sequence of the beacon’s state estimates 

 k k 1 k Tx ,x , ,x− −  can be used to set the desired path for the 

mobile robot. If the corresponding covariance matrices 

 k k 1 k TP ,P , ,P− −  are also known, then this path-to-be can be 

smoothed using the Rauch-Tung-Striebel smoother. The 
estimate and covariance sequences are rewritten as 

 T T 1 0x ,x , ,x−  and  T T 1 0P ,P , ,P−  accordingly. The 

initial smoothed estimate is 
s
T Tx x=  with the covariance 

s
T TP P= . Then the smoother is applied from the last time step 

to the first (i.e., t T 1, ,0= − ) according to the description 

given in [18]. 
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   T T 1 0 T T 1 0x ,x , ,x , P ,P , ,P , A, Q,T− −

t T 0= →

   s s s s s s
T T 1 0 T T 1 0x ,x , ,x , P ,P , ,P− −

tt 1 tx Ax+ =
T

tt 1 tP AP A Q+ = +
T 1

t t t 1 tS P A P−
+=

( )s s
t t t t 1 t 1 tx x S x x+ += + −

( )s s T
t t t t 1 tt 1 tP P S P P S+ += + −

 

3.4. Extended Kalman filter 

According to [18], the stochastic system model can be 
described as follows: 

( )
k 1 k k

k k k

x Ax ,

r h x ,





+
 = +


= +

  (6) 

( )kh x  is the vector-valued function containing N  elements  

m 2 m 2 m 2
k n k n k n( x x ) ( y y ) ( z z )− + − + − , n 1, , N= ;  

T

k 1,k N ,kr r r=     is the measurement vector;  

kP  is the covariance matrix of the state; 

kR  is the non-stationary measurement noise covariance matrix. 

To estimate the measurement noise covariance [20], we assume 
that  

T T T
k k k k k k kE s s E H P H    = −

    , where ( )k k ks r h x= −  is 

residual, when 

0

k
k T T

d d k k k

d k D

R , k D,

R 1
s s H P H , k D,

D = −




= 
+ 




  (7) 

D  is the estimation window size, 

k k k 1H dh dx −=  is the Jacobian matrix with N  rows  

T
m

nk k 1

m 2 m 2 m 2
n n nk k 1 k k 1 k k 1

m
nk k 1

m 2 m 2 m 2
n n nk k 1 k k 1 k k 1

m
nk k 1

m 2 m 2 m 2
n n nk k 1 k k 1 k k 1

( x x )

( x x ) ( y y ) ( z z )

( y y )

( x x ) ( y y ) ( z z )

( z z )

( x x ) ( y y ) ( z z )

0

0

0

−

− − −

−

− − −

−

− − −

 −
 
 − + − + −
 
 −
 
 − + − + −
 
 −
 
 − + − + −
 
 
 
 
 
 

, 

n 1, , N= . 

On the initial step 
Tm m m

0 0 0 0x x y z 0 0 0 =
 

, 

where ( )
T 1m m m T T

0 0 0 0x y z B B B g
−

  =
 

; 

( )2 2 2 2 2 2
0 u u u v v vP diag , , , , ,     = ; 

2 2
0 r r

N

R diag , ,  =
 
 

  
(8) 
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1T T

k k k k kk k 1 k k 1G P H R H P H
−
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( )k k ks r h x= −

k
T T

k 1 d d k k k

d k D

1
R s s H P H

D
+

= −

= +
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3.5. Unscented Kalman filter 

In the initial step, the set of sigma points is computed as 

0 0 0 0 0
U 1

U U U U
2U 1

x x U 0 P P 


 
+

 = + + − 
    

, where 

Tm m m
0 0 0 0x x y z 0 0 0 =

  ,  
(9) 

( )
T 1m m m T T

0 0 0 0x y z B B B g
−

  =
 

. 

Each sigma point has its own weight, calculated by the 
formulas 

( )m m c c
0 2U

2U 1

T
m m

2U 1

W w w diag w , ,w

w w ,





+

+

  = −  
  

  

  −
  

     

(10) 
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0 0 0X ,P ,R , A, Q,W , ,U ,D,h

k kx ,P

k D

k 1 0R R+ =

k k 1A  −=
m

kk k 1x w− = 

k kk k 1P W Q − = +

m
kk k 1 k k 1s r w− −= − 

( )k k 1 k k 1h − −=

( )
1T T

k kk k 1 k k 1 k k 1 k k 1G W W R   
−

− − − −= +

k kk k 1 k k 1x x G s− −= +

( )T T
k k k kk k 1 k k 1 k k 1P P G W R G − − −= − +

m
k k ks r w= − 

k
T T

k 1 d d k k

d k D

1
R s s W

D
 +

= −

= +

k 1 K= →

 k k 1 k k 1 k k 1x x − − −= +

 k k kx x = +

k kU 0 P P  + − 

k k 1 k k 1U 0 P P − −
 + − 

 

where 
Tm m m

0 2Uw w w =
 

, m
0w

U




=

+
, 

c 2
0w 1

U


 


= + − +

+
, 

( )
m c
i i

1
w w

2 U 
= =

+
, i 1, ,2U= ; 

U 6=  refers to the number of components in the state vector 

kx ; 

( )2 U U  = + −  is a scaling parameter; 

, ,    are the parameters of the method; 

kR  is the non-stationary measurement noise covariance 

matrix. To estimate the measurement noise covariance [21], we 
assume that 

T T T
k k k k k kE s s E W      = −

    , where 
m

k k ks r w= −   is 

residual, 

0

k
k T T

d d k k

d k D

R , k D,

R 1
s s W , k D,

D
 

= −




= 
+ 




  

(11) 

D  is the estimation window size, 

( )k kh = , kX  is the array of sigma points. 

The initial value of ( )2 2 2 2 2 2
0 u u u v v vP diag , , , , , ,     =

2 2
0 r r

N

R diag , ,  =
 
 

. 

The filter implementation complies with [18]. 

3.6. Particle filter 

To describe the beacon’s position, the following state vector 
Ty zm m m xx x y z v v v =

 
 is used, where 

( )0x ~ x x , . 

The initial estimate is 
Tm m m

0 0 0 0x x y z 0 0 0 =
 

, 

where ( )
T 1m m m T T

0 0 0 0 0u x y z B B B g
−

 = =
 

, 

( )2 2 2 2 2 2
u u u v v vdiag , , , , ,      = . 

Based on the distribution ( )0x x ,
1
, the set of particles 

0X  is generated. For each particle j ,kx , the weight j ,0w 1 J=  

is set, with the sum of the weights being 

J

j ,0

j 1

w w 1
=

= = , 

j 1, , J= . 
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4. RESULTS 

During the experiments, an array of N 4=  receivers was 

statically placed, while a mobile robot carrying the active 
beacon was moved in front of it following a rectangular path 
(Figure 3) with a width of 4 m and a length of 7 m (1st 
experiment) or 10.5 m (2nd experiment). The robot moved 

clockwise, starting and finishing at the coordinates ( )2;  1−  in 

the array’s local coordinate system.  
For each beacon’s position, we computed a total of six 

estimates using the methods described above. The number of 

particles in the particle filter is J 5000= . To compare the 

performance of these methods, we calculated the average of the 
Root Mean Square Errors (RMSE).  

Dynamic errors in the form of distances between the 
estimate of the active beacon trajectory and the exemplary 

trajectory in the two-dimensional 2  and three-dimensional 

coordinate systems 3  in time are presented in Figure 3. 

The grey area on the dynamic error graphs marks the parts 
of the active beacon path corresponding to the smallest sides of 
the rectangle. On the left-hand side, the path estimates and 
their dynamic errors are shown, which are calculated based on 
the shifted differences of the square distances between the 

beacon and each of the receivers ng . On the right-hand side, 

the path estimates and their dynamic errors are shown, which 

are calculated based on the distances between the beacon and 

each of the receivers nr .  

Table 1 shows the RMSEs of the beacon’s position estimates 
during the first experiment. Errors RMSE(|Δ2|) and 
RMSE(|Δ3|) correspond to the estimates made in the two-
dimensional and three-dimensional coordinate systems 
respectively. 

The Rauch-Tung-Striebel smoother outperforms other 
considered methods in terms of RSMEs and dynamic errors. 
However, the path estimates shown in Figure 3 appear to be 
more parallelogrammatic than rectangular, altering the shape of 
the original path. These alterations were caused by the side 
wind during the experiment. 

During the second experiment, no wind was present. 
Furthermore, the length of the ground truth rectangle was 
increased to 10.5 m. The path estimates and the corresponding 
dynamic errors are shown in Figure 4. The RSMEs are shown 
in Table 2. 

Clearly, the Rauch-Tung-Striebel smoother demonstrates the 
best estimate again, despite changes in the experimental 
conditions. 
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Figure 3. Path estimates and the corresponding dynamic errors in the 1st 
experiment: 1. Least squares method with exponential smoothing. 2. 
Kalman filter. 3. Kalman filter with Rauch-Tung-Striebel smoother. 4. 
Unscented Kalman filter. 5. Particle filter. 6. Extended Kalman filter. 

Table 1. The root mean square errors of the beacon’s position estimates 
during the first experiment 

 RMSE(|Δ2|), m RMSE(|Δ3|), m 

ES 0.7365 0.8948 

KF 0.6161 1.0029 

RTS 0.4776 0.7410 

EKF 0.5569 0.9255 

UKF 0.4922 0.8875 

PF 0.4830 1.0422 
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5. FUTURE RESEARCH 

The main goal of our future research in this area is to 
eliminate biases caused by the wind and measurement errors 
during the estimation of the system’s structural parameters. To 
estimate these parameters, we plan to perform a calibration 
procedure involving the 3D LiDAR mounted on the robot. 
Given the 3 cm accuracy of the LiDAR measurements and 
usage of the machine learning algorithms, such calibration 
should outperform the current manual measurements made 
with the slide rule. Moreover, it should also allow for estimating 
the size and the shape of the receivers.  

Currently, the effective measurement range is up to 20 m; 
however, it can be extended to 100 m. This can be achieved by 
combining the ultrasonic measurements with the GNSS-based 
measurements. In this case, it is possible to mitigate the relative 

displacement between the robot’s and beacon’s GNSS receivers 
by mixing the ultrasonic and the GNSS data, while the distance 
between the robot and the beacon is relatively small.  
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Figure 4. Path estimates and the corresponding dynamic errors in the 2nd 
experiment: 1 – least squares method with the exponential smoothing,  
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