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1. INTRODUCTION 

On-line monitoring of laser welding can be carried out by 
many inspection techniques, based on acoustic emission, optical 
detection, image analysis, radiographic testing and ultrasonic [1]. 

In particular, non-contact optical systems are widely used for 
on-line monitoring of quality, geometry and position of 
welding, based on different optical measurement methods, like 
spectroscopic studies of the welding plasma plume [2], 
triangulation systems [3] and other types of solutions [4]; 
remarkable measuring performances could be achieved in terms 
of measurement uncertainty, even though the cost of these 
solutions is often high, so that their use is limited to specific 
applications. 

Furthermore, if reliable and accurate information is needed, 
more actions have to be provided, in order to improve the 
efficaciousness of results for geometry and defect classification, 
in particular for what the image processing is concerned. 

In fact, careful image analysis algorithms have been 
developed  for  defect  classification  for   images   obtained   by  

 
 
 

radiographic systems [5], [6] or by measurement sensors of the 
eddy current type [7]. Further approaches appear in literature, 
often based on neural networks and genetic algorithms, having 
different objectives: identification of welding parameters for 
optimization of both welding characteristics and cost [8], [9], 
classification of defects in general of components for the 
automotive industry [10] or of welding in particular [11]. 
Furthermore, deep attention has been paid to the use of neural 
networks for image analysis for quick and effective 
classification based on a machine learning method [12]. 

An optical laser sheet is a simple and economical way to 
carry on non-contact geometrical measurements in different 
types of applications [3], [4], [13], [14]; a sheet of laser light 
allows to overcome the problem of low contrast images and to 
obtain, in a simple manner, information on the shape of 
surfaces.  

This is particularly important in case of investigation of 
untreated metal surfaces. In fact, at the intersection of the laser 
sheet with the object to be analysed, the laser line appears to be 
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well contrasted with respect to the object surface. In this way, 
the intersection points (circled in red in Figure 1) between 
different surfaces of an object are easily identified.  

Usually the accuracy of these systems has to be optimized, in 
order to achieve a satisfactory uncertainty level [15]-[17], 
especially for the control of complicated geometries as in case 
of automotive applications. Furthermore, the best quality level 
for measurements has to be maintained and this should be 
assessed on-line with a method not too onerous from the point 
of view of time, operations and data processing requirements. 

Therefore, it is important to develop both a vision system 
that works well under certain environmental conditions and a 
methodology able to automatically maintain good metrological 
characteristics, also in complex applications and varying 
operating conditions. In this paper the measurement capability 
of a measurement system based on a laser sheet is described, 
with reference to the monitoring of welding having a 
complicated geometry, for realization of big mechanical 
components. 

Furthermore, an experimental methodology is presented, in 
order to improve the possibility of using this simple measuring 
solution also in difficult situations, aiming to automatically 
check and maintain conditions of good setting of the vision 
system, with particular attention to the variations of the lighting 
level and characteristics.  

This work aims to individuate the main parameters affecting 
uncertainty and to evaluate their effect from both a theoretical 
and experimental point of view. 

A previous work of the authors [18] developed a first 
attempt to set a method based on a laser sheet system able to be 
robust and simply to use, for on-line continuous check of the 
right optical and procedural settings. The p-value parameter 
[19] was used to automatically identify the best settings for the 
vision system, taking into account the main causes of 
uncertainty. The method demonstrated to be able to detect the 
effects of a little variation of settings, so strongly supporting the 
setup of the vision system. The effect of process variability was 
also studied, in particular dimensional variability of pieces to be 
welded together, showing that the method is very sensitive to it. 
The methodology proved to be robust and reliable in practical 
applications. 

According to the previous considerations, the paper 
describes an improved methodology able to improve the 
accuracy of dimensional measurements and to reduce the 
processing time of the images of the measured pieces for more 
efficient use in on-line applications. The method is based on the 
use of a machine learning approach for optimal set-up and 
uncertainty reduction, despite of the variation of procedural and 

environmental conditions. 
A specific section will present the improved methodology 

explaining the theoretical and experimental motivations of it. 
The experimental results and the way the data have been 

processed will be described, in order to validate the 
methodology for a class of practical applications.  

Some discussions with reference to the use in field will 
conclude the paper. 

2. MATERIALS AND METHODOLOGY 

Position and dimensional check of welding is by a vision 
system, which is based on a laser sheet, whose architecture is 
shown in (Figure 2 and Figure 3). A detailed description of 
components and the complete procedure for the setup of the 
system is given in a previous work [20]. In the present paper, 
the Matlab software and Machine Learning Toolbox and 
Computer Vision System Toolbox have been used, to analyse 
the illumination conditions in the acquired images. 

The proposed system uses the same hardware components 
of the triangulation systems [3], but it provides a different 
software elaboration; in fact, this approach does not identify the 

 
Figure 2. Scheme of the system for the welding control. 

 

 

Figure 3. Picture of the system for the welding control. 

 
Figure 1. Example of identification of the intersection point between two 
lines generated by the laser sheet. 



 

ACTA IMEKO | www.imeko.org December 2016 | Volume 5 | Number 4 | 6 

geometrical surface of the analysed object, but it evaluates, in a 
simple manner, the distance of characteristic points from a 
reference. This possibility can be useful in all phases of a 
welding process: the checking of the line of contact of two 
pieces to be welded (seam tracking); the driving of the robotic 
arm that deposits the welding bead; the validation of the 
position and of the dimensional parameters of the realized 
welding (positioning and shape of the weld).  

Measurements have been carried out on a piece constituted 
by two perpendicular steel plates, to be welded together by a 
linear bead, that is the typical T-joint. The weld seam will have a 
convex shape and a throat thickness of about 5 mm. In this 
case, the position of interest is the intersection point between 
two lines generated by the laser sheet (Figure 1), with respect to 
a reference point of the piece (seam tracking).  

It is to be noticed that the method is also suitable for other 
configurations, allowing the measurement of any dimensional 
parameter based on the evaluation of the distance between two 
different points. This method is potentially not influenced by 
the welding parameters. 

It is important to ensure that characteristics of correct 
setting of the system are set over all the time, so that the 
measurement results are reliable and accurate.  

Having a correct setting physically means that all variability 
causes act in a random and reduced way, so that no systematic 
and no remarkable effects of any specific variability cause 
appear. Therefore, if the system is properly set, measurements 
are according a Gaussian variability with fixed mean and 
reduced standard deviation [21]. The methodology described 
hereinafter is based on this assumption. This condition should 
be guaranteed both at the installation time of the vision system 
and during the on-line working. 

In the previous step [18] the Gaussian distribution of 
repeated measurement of quantities of interest was verified by 
the p-value [19]. The p-value is widely used in statistical 
hypothesis testing.  

A model (the null hypothesis) and a threshold value for p, 
called the significance level of the test and denoted as α, have to 
be chosen. If the p-value is less than or equal to the significance 
level (α), the test suggests that the observed data is inconsistent 
with the null hypothesis, so the null hypothesis must be rejected 
[19]. 

In this case the null hypothesis is the Gaussian distribution 
of measurement results, then, if the p-value, ranging between 0 
and 1, is greater than a pre-set threshold, the Gaussian 
distribution of measurements is guaranteed, with the 
confidence level indicated in the calculation of the p-value 
itself. 

Of course, before the production activity begins, the time 
available for checking that the measurement distribution is 
effectively Gaussian is much more than the one available during 
the production, due to the need of avoiding bottle necks to the 
production rhythms. 

Therefore, automatically checking these conditions asks 
different requirements due to differences of time duration 
available for control before the start of production and during 
the production itself; this will influence the number of repeated 
measurements which are possible. 

The need of assuring that the probability distributions of 
possible measurements are unchanged (according to the 
measurement performances) all along the time requires that the 
closeness of both distributions is evaluated in very short time 
for on-line control. 

In the former approach [18] measurements were carried out 
on each production workpiece, to check that the optimal setup 
conditions are maintained. Each measurement was repeated n 
times (typically n=30); that takes about 2 s to 3 s depending on 
the acquisition and image processing rate of the system. The p-
value was calculated on the basis of these n measurements.  

Then, the p-value estimate is compared with a threshold 
value: if the p-value is above the threshold level, the system is 
correctly set.  

The threshold level can be defined in relation to a requested 
accuracy and to specific environmental conditions by means of 
a statistical analysis (mean and standard deviation of p-values) 
based on a sufficient number of p-values (at least 30 p-values) 
calculated on the first batch of production. 

Being necessary to acquire 30 measurements in static 
condition and to post-elaborate the p-value, in some cases the 
production process can be too fast for this method.  

For these reasons in this paper the procedure has been 
improved according to actions described in the following: 

1. "Optical" setup of the vision system and spatial 
calibration: the optical setup is carried out using a simple 
calibration pattern. The pattern has to be framed by the camera, 
and a program for the identification of edges and intersection 
points is implemented, using the software for the image 
processing. Focusing and exposure time are manually set, until 
all elements are recognized. A gauge block of known size is 
used for the evaluation of the ratio pixel/mm. 

2. Preliminary tests: an experimental and parametric 
study of the effect of changing the settings of the optical system 
and of the variation of environmental conditions is carried out. 
Of course, the most relevant aspects are taken into account, like 
grey level settings and environmental light intensity and 
typology variation, but other variability sources of the welding 
process could be considered like, for example, differences in 
surface reflection. For each test condition the p-value and its 
statistics are evaluated, in order to correlate estimated ranges of 
the p-value to different operating conditions, depending on 
settings and environmental scenario. This step is intended to 
realize a correspondence between level of p-value, illumination 
conditions and settings of the vision system. The estimated 
uncertainty level is also of concern.  

3. Training and testing of the machine learning classifier: 
for each test condition 150 images are acquired to train and test 
a machine learning classifier. The aim of the classification is to 
quickly identify the operating illumination condition and then 
the corresponding optimal settings of the vision system. 

4. Validation: repeated measurements for all the 
considered working conditions are carried out in order to check 
the reproducibility of the p-value measurements. This step will 
be also used to more effectively define the p-value threshold, 
taking into account the variability in reproducibility conditions.   

5. On-line monitoring of the optical system: one image is 
recorded and classified by the machine learning classifier, to 
identify the actual operating conditions (illumination condition 
and settings of the vision system). In this way, image 
classification allows to measure indirectly the p-value for the 
system: in case a predefined threshold in not reached, the 
system settings should be automatically modified in order to 
improve the p-value for optimal setting. When the p-value is 
greater than the threshold limit, the measure of the distance of 
interest can be accepted with known uncertainty level. 

A synthesis of the methodology is represented in the flow 
diagram of Figure 4. 
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In the next section the methodology will be discussed with 
reference to some practical applications concerning pieces to be 
welded. 

3. RESULTS 

In this section the effects of varying the settings of the 
vision system with respect to the best ones in different lighting 
conditions and the application of the machine learning 
procedure are evaluated.  

Measurements have been carried out on a piece, as an 
example, constituted by two perpendicular steel plates, to be 
welded together by a linear bead (Figure 1).  

Grey threshold has been identified as the most relevant 
setting parameter, to be studied, together with the lighting 
conditions as for the environmental parameters. The change of 
setting of the vision system, by varying the grey thresholds 
(variation of the grey level in the transition from dark area to 
the light one, ranging from 0 to 255) modifies the two 
boundaries of the laser line, which is a broken line because of 
the object shape (Figure 1). These data should be processed in 
order to find the distance to be measured.  

Six different conditions of illumination (ic) have been 
compared. For each lighting different settings of the grey 
threshold have been examined:  

- ic 1: a neon light system at a 2 m distance from the 
object.  

- ic 2: the same as ic 1, but the neon light system is 
partially obscured on the left side at 1.5 m of distance 
of the steel piece.  

- ic 3: the same as ic 1, but the neon light system is 
partially obscured at 0.3 m distance.  

- ic 4: the same as ic 3, but the neon light system is 
partially obscured at 0.5 m distance.  

- ic 5: the same neon system as ic 1, but a led lamp is 
added at 0.3 m distance.  

- ic 6: the same as ic 2, but the led lamp is placed at 0.5 
m distance.  

The system setting can be optimal or not. This depends on 
the grey threshold values selected. The conditions are optimal 
when the measurement result corresponds to the reference one 
and the standard deviation is based on casual effects and then 
the calculated p-value is very high (near to 1).  

For each illumination condition four cases are analysed: 
three cases have different grey threshold values, the last one is 
the reproduction of the best case among the previous, based on 
the p-value. Table 1 shows the test plan, having 24 different 
cases. 

According to the procedure described in the previous 
section, a large number of data has been acquired, in the order 
of 3000 measurements for each case and 150 bitmap images.  

The results of the “preliminary tests” are discussed in the 
following subsections. 

3.1. P-value analysis 
The results “preliminary steps” are described in the graphs 

of Figure 5. For all tests n = 30, being n the number of 
repeated on-line measurements. 

 In particular, the diagrams of Figure 5 show the behaviour 
of the mean p-value (averaging 100 p-values) with respect to 
the set measurement uncertainty (standard deviation of the 
normal reference distribution of the vision system 
measurements) for all the examined cases. The reference 
distance value is (60.77 +0.01) mm.  

For the cases with the optimal settings, even though the set 
uncertainty is reduced, the mean p-value remains practically 
unchanged, maintaining high values; for the other two cases, 
the found p-value quickly drops when the requested uncertainty 
of measurements is reduced. This is true for all the illumination 
conditions (except for ic 5). This result is very reasonable and it 
also suggests that a threshold value could be set to separate the 
best setting case from other ones. 

The diagrams of Figure 5 show that separated p-value ranges 
occur, between settings optimal or not, if a reduced standard 
uncertainty is considered (standard uncertainty less than 0.23 
mm). This result confirms the ability of this method of 
distinguishing the correct setting from slightly different 
configurations of the vision system.  

In all the conditions of lighting considered, in case the right 
setting of the grey threshold is fixed, the estimated distance 
between the reference points is in the range (60.77 ± 0.01) mm.  

The diagram of Figure 5 shows that the p-value is strongly 
dependent on the grey setting for all the lighting conditions, 
which have been examined. Due to the found differences of p-
value, even though the variability of p-value is taken into 
account, threshold values could be easily set, in order to quickly 
identify a condition of right setting.  

It is interesting to compare for each illumination condition 
p-values between cases 1 and 4, corresponding to same settings: 
the p-value estimates are very repeatable for all conditions. 

3.2. Machine learning classification 
The results of the “training and testing of the machine 

learning classifier” phase of the methodology described in 
Section 2 are now discussed. 

150 bitmap images, randomly selected from cases 1 to 3 for 
each illumination condition, have been used for the training and 
the testing of the machine learning algorithm. The steps for the 
machine learning system are described in the following: 

1. Loading the images in the system: 900 images are 
loaded in the system (150 for each illumination condition). 

 

Figure 4. Flow diagram of the methodology. 
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Table 1. Tests plan. 

Illumination condition Case Grey threshold 1 Grey threshold 2 Optimal 
Illumination condition 1 Case 1 40 60  
Illumination condition 1 Case 2 45 80 optimal 
Illumination condition 1 Case 3 55 100  
Illumination condition 1 Case 4 45 80 optimal 
Illumination condition 2 Case 5 45 80  
Illumination condition 2 Case 6 75 40 optimal 
Illumination condition 2 Case 7 55 60  
Illumination condition 2 Case 8 75 40 optimal 
Illumination condition 3 Case 9 45 80  
Illumination condition 3 Case 10 55 50 optimal 
Illumination condition 3 Case 11 65 65  
Illumination condition 3 Case 12 55 50 optimal 
Illumination condition 4 Case 13 45 80  
Illumination condition 4 Case 14 50 90 optimal 
Illumination condition 4 Case 15 55 60  
Illumination condition 4 Case 16 50 90 optimal 
Illumination condition 5 Case 17 45 80  
Illumination condition 5 Case 18 50 75  
Illumination condition 5 Case 19 55 60 optimal 
Illumination condition 5 Case 20 55 60 optimal 
Illumination condition 6 Case 21 45 80  
Illumination condition 6 Case 22 85 54 optimal 
Illumination condition 6 Case 23 65 65  
Illumination condition 6 Case 24 85 54 optimal 

 
Figure 5. Mean p-values and their standard deviation ranges vs. standard uncertainty. 
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2. Extracting features from the images and keeping 80 % 
of the strongest features from each image set. A feature is a 
measurable property or a characteristic of the image; for 
instance, a geometrical point of discontinuity in the image or an 
area at a specific grey level. In total the Matlab script 
automatically finds 24491 features for each illumination 
condition. 

3. Using K-Means clustering to create a 200 words visual 
vocabulary from the 24491 features. 

4. Encoding all the 900 images with the features and the 
clustering method described in point 2 and 3. 

5. Selecting and training the supervised machine learning 
classifier: the images used for the training are 50 % of the 
available ones for each illumination condition. The others ones 
are used for the testing of the system.  

A large number of algorithms are compared for the training 
of the system. The results are described in Table 2. Most of the 
algorithms detect the features with 100 % of accuracy. This 
result confirms the high quality of the images and the 
uniformity of them in each training set. This is a good result for 
the training phase but a problem in on-line monitoring. In fact, 
an algorithm trained with a dataset having low variability 
generally is unable to work with real data, which are more 
variable than the original ones. 

3.3. Validation of the machine learning classifier 
The results of the “validation” phase of the methodology 

described in Section 2 are now discussed: the images of the 
fourth case of each illumination condition are used to test the 
classifier. Five images are taken from each of the following 
cases: 4, 8, 12, 16, 20, 24. These cases are representative of all 
the illumination conditions (ic 1 to ic 6). These images are taken 
in the same conditions as the other cases, after a few hours 
delay. Even though a few hours interval occurs between 
acquisitions, the images to be compared are very similar (Figure 
6). The classifiers with accuracy 100 % have been used in the 
validation step. Among these, the best results have been 
reached by means of the “Linear Discrimination” classifier, 
described in Table 3, in the second column.  

All the conditions are correctly identified. 

Based on the successful classification, the working situation 
is identified and the standard deviation of the measurements 
can be estimated, depending on the actual setting of the grey 
threshold levels, according to the results of Figure 5. 

In order to check the reproducibility of measurements, the 
mechanical and the optical systems have been dismounted and 
reassembled; also all the different illumination conditions were 
recreated as before, with the aim of obtaining the same working 
conditions as cases 4-8-12-16-20-24. 

A preliminary p-value evaluation has been made, to check 
that optimal working conditions arise for all illumination 
conditions to be analyzed. A test concerning the classification 
of images, according to the illumination condition, is carried 
out; results are shown in the same Table 3 in the third column. 

 
 

First image of case 1 Last image of case 4 

Figure 6. Comparison of images with same illumination condition. 

Table 3. Response of Linear Discrimination classifier Training results. 

Illumination condition 
of the input image 

Response of 
Linear 

Discrimination 
classifier 

Response of Linear 
Discrimination 

classifier with new 
data 

ic_4 ic_4 ic_3 
ic_2 ic_2 ic_2 
ic_3 ic_3 ic_2 
ic_2 ic_2 ic_2 
ic_1 ic_1 ic_1 
ic_6 ic_6 ic_6 
ic_5 ic_5 ic_5 
ic_4 ic_4 ic_3 
ic_6 ic_6 ic_6 
ic_5 ic_5 ic_5 
ic_5 ic_5 ic_5 
ic_4 ic_4 ic_3 
ic_6 ic_6 ic_6 
ic_3 ic_3 ic_2 
ic_1 ic_1 ic_1 
ic_3 ic_3 ic_2 
ic_2 ic_2 ic_2 
ic_1 ic_1 ic_1 
ic_4 ic_4 ic_3 
ic_1 ic_1 ic_1 
ic_3 ic_3 ic_2 
ic_2 ic_2 ic_2 
ic_6 ic_6 ic_6 
ic_1 ic_1 ic_1 
ic_6 ic_6 ic_6 
ic_4 ic_4 ic_3 
ic_3 ic_3 ic_2 
ic_5 ic_5 ic_5 
ic_2 ic_2 ic_2 
ic_5 ic_5 ic_5 

 

 

Table 2. Training results. 

Classifier Accuracy 

Decision Trees Complex 99.3 % 
Decision Trees Medium 99.3 % 
Decision Trees Simple 83.3 % 
Discrimination Analysis Linear 100 % 
Discrimination Analysis Quadratic 100 % 
SVM Linear 100 % 
SVM Quadratic 100 % 
SVM Cubic 100 % 
KNN Fine 100 % 
KNN Medium 100 % 
KNN Coarse 100 % 
KNN Cosine 100 % 
KNN Cubic 100 % 
KNN Weighted 100 % 
Ensembles Boosted Trees 17 %  
Ensembles Bagged Trees 100 % 
Ensembles Subspace Discriminant 100 % 
Ensembles Subspace KNN 100 % 
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The classification capability of the classifier is satisfactory: 
only a few conditions are confused, being very similar with 
respect to the illumination condition (Figure 7). In case of 
confusion, the uncertainty corresponding to the poorer 
illumination condition can be considered. 

4. CONCLUSION 

A method has been discussed for on-line validation of 
position measurements of a monitoring system for welding. 
The device is based on a vision system and a laser sheet. 

The p-value parameter has been used to automatically 
identify the best settings for the vision system, taking into 
account the main cause of uncertainty. The method is able to 
detect the effects of a little variation of settings, so strongly 
supporting the setup of the vision system. A procedure has 
been proposed with the purpose of applying it on-line; it has 
been validated for different conditions of lighting.  

The results proved that the procedure is able to check the 
holding of optimal measuring conditions by using a machine 
learning   approach  for   the  vision   system:   based  on  such 
a methodology single images can be used to check the settings, 
for on-line use. Once the working situation is identified, the 
standard deviation of the measurement can be estimated, 
depending on the actual setting of the grey threshold levels. 
Achievable uncertainty values are in the order of some tenths of 
a millimeter. 

As an important improvement of the previous version of the 
method, the presented solution allowed to make the 
measurement procedure unaffected by the process variability 
with a remarkable reduction of measurement uncertainty. 
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