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1. INTRODUCTION 

The basic working tool in measurement uncertainty analysis, 
as advocated in the current revision (under preparation) of the 
Guide to the expression of uncertainty in measurement (GUM) [1], and 
consistent with its Supplement 1 – Propagation of distributions using a 
Monte Carlo method [2], is the state-of-knowledge PDF about the 
quantity (true value of measurand), based on the currently 
available information. The state-of-knowledge PDF quantifies 
the degree of belief about the values that can be assigned to the  

 

 
quantity based on the available information. The expectation 
and the standard deviation of this PDF (if they exist) are used 
to report the measurement result and the associated (standard) 
measurement uncertainty.  

Although the latest GUM development emphasizes the 
Bayesian view of probability in the evaluation of measurement 
uncertainty, it should be clearly stated and understood that this 
approach is not based on the strict Bayesian principles of 
statistical inference (i.e. straightforward application of the 

ABSTRACT 
Measurement uncertainty analysis based on combining the state-of-knowledge distributions requires evaluation of the probability 
density function (PDF), the cumulative distribution function (CDF), and/or the quantile function (QF) of a random variable reasonably 
associated with the measurand. This can be derived from the characteristic function (CF), which is defined as a Fourier transform of its 
probability distribution function. Working with CFs provides an alternative and frequently much simpler route than working directly 
with PDFs and/or CDFs. In particular, derivation of the CF of a weighted sum of independent random variables is a simple and trivial 
task. However, the analytical derivation of the PDF and/or CDF by using the inverse Fourier transform is available only in special cases. 
Thus, in most practical situations, a numerical derivation of the PDF/CDF from the CF is an indispensable tool. In metrological 
applications, such approach can be used to form the probability distribution for the output quantity of a measurement model of 
additive, linear or generalized linear form. In this paper we propose new original algorithmic implementations of methods for 
numerical inversion of the characteristic function which are especially suitable for typical metrological applications. The suggested 
numerical approaches are based on the Gil-Pelaez inverse formulae and on using the approximation by discrete Fourier transform and 
the fast Fourier transform (FFT) algorithm for computing PDF/CDF of the univariate continuous random variables. As illustrated here, 
for typical metrological applications based on linear measurement models the suggested methods are an efficient alternative to the 
standard Monte Carlo methods. 
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Bayes' theorem). For more details and further discussion see, 
e.g., [3]-[5], or [6], and also [7] and [8].  

In fact, the GUM approach is based on using a well-defined 
functional relationship between the mutually inter-related 
quantities for propagating the state-of-knowledge PDFs of the 
input quantities, represented by the random variables (RVs), 
into the state-of-knowledge PDF of the output quantity – 
which is believed to be a RV reasonably associated with the 
measurand. Frequently, it is suggested to use a well-known 
functional relationship (based, e.g., on the physical and/or 
geometrical laws) between the true value of the measurand and 
the true values of the other influencing input variables, which is 
typically expressed by the measurement equation of the 
measurement model. 

Obviously, such PDF of the output quantity represents 
currently available knowledge (limited, but hopefully the best to 
date) about the measurand, i.e. it expresses probability 
distribution of the values being attributed to a quantity (the 
measurand), based on information used (which could be rather 
limited and/or heavily biased). This interpretation is consistent 
to the original GUM definition of the uncertainty in 
measurement (see [1], clause 2.2.3), which is defined as a 
parameter, associated with the result of a measurement, that 
characterizes the dispersion of the values that could be 
reasonably attributed to the measurand. However, the derived 
term coverage interval is inconsistent with this interpretation, for 
more details and discussion see [8]. 

In fact, without imposing further (well and clearly defined) 
model assumptions and optimality criteria for selecting and 
combining the information, it can be only hardly expected that 
the presented result shall represent the best (in what sense?) 
estimate of the true measurand value. On the other hand, the 
proposed GUM approach could be well accepted as a (simple) 
method for combining experimental results with the expert 
judgment in order to get comprehensive characterization of our 
knowledge about the true value of measurand, based on all 
currently available information, albeit without the possibility of 
guaranteeing the (otherwise naturally) required statistical 
properties and/or optimality criteria. If this is the goal, other 
means and/or subsequent analysis should be applied and 
properly used. 

As already mentioned, the term coverage interval (introduced in 
[2], and defined as the interval containing the (true) value of a 
quantity with a stated probability (say 95 %), based on the 
information available) is not properly used in this context. 
Hence, as an alternative to the 95 % coverage interval, here we 
shall use a more appropriate term – the 95 % state-of-knowledge 
interval. This should read as the interval of 95 % values that could be 
reasonably attributed to the unknown value of measurand based on the 
current state-of-knowledge (i.e. based on the measurement model, 
the currently available information, and method used for 
combining the information). Of course, further study is 
necessary for characterizing the optimality properties of the 
used method, e.g., under repeatability conditions. 

A standard approach to derive the state-of-knowledge PDF 
is based on the propagation of distributions using a Monte 
Carlo method, as suggested in Supplement 1 of the GUM, [2].  
For more details and discussion on applicability of the 
uncertainty evaluation methods based on the GUM and its 
Supplement 1 see, e.g., [9]-[12].   

A principal advantage of the Monte Carlo methods is their 
simplicity and asymptotic consistency (convergence to the true 
values with growing number of the Monte Carlo simulations). 

A disadvantage of the Monte Carlo methods is their principal 
ambiguity (i.e. non-uniqueness/variability of the results under 
independently repeated computations with given number of 
simulations) and typically large demand on the computational 
resources. Often, to achieve the pre-selected accuracy level, a 
need of a very large number of simulations is required.  

Alternatively, in linear measurement models, the state-of-
knowledge PDF of the output quantity can be derived by 
inverting its characteristic function, which can be easily derived 
from the known characteristic functions of the input quantities. 

A principal advantage of the methods based on inversion of 
the characteristic function is their principal exactness (as there 
is a theoretical one-to-one mapping between the CF and the 
CDF) and efficiency for all values of the computed 
CDF/PDF/QF.  However, in real situations, the precision of 
the used computational methods is also subject to possible 
numerical errors. A typical numerical error of such results is 
due to particular algorithmic implementation (as e.g., the 
truncation error and/or the integration error), which can be and 
should be properly controlled. As we shall illustrate below, in 
typical metrological applications with linear measurement 
models and the well behaved probability distributions of the 
input quantities, the numerical precision and efficiency of the 
here presented simple methods and algorithms is superior to 
the standard Monte Carlo methods.   

We notice that among other possible alternative approaches 
to evaluate the propagated probability distribution of the output 
quantity we can include the advanced methods for arithmetic 
computations with random variables and their distributions, see 
e.g. [13], [14], and also [15], [16]. However, applicability of these 
methods is still limited to a relatively small number of the input 
random variables. 

2. LINEAR MEASUREMENT MODEL AND THE 
CHARACTERISTIC FUNCTIONS 

As mentioned above, an alternative tool to form the state-
of-knowledge probability distribution of the output quantity in 
a linear measurement model is based on the numerical inversion 
of its characteristic function (CF), which is defined as a Fourier 
transform of its PDF, see (2). 

Computing the (inverse) Fourier transform numerically is a 
well-known problem, frequently connected with the problem of 
computing integrals of highly oscillatory (complex) functions. 
The problem was studied for a long time in general, but also 
with focus on specific applications, see, e.g., [17]-[22], to show 
just a few. In particular, the methods suggested for inverting the 
characteristic function for obtaining the probability distribution 
function include [23]-[27]. 

Approximations of the continuous Fourier transform by the 
discrete Fourier transform and by using the FFT algorithm are 
widely used in different fields of engineering. However, using 
the FFT for evaluation of the PDF/CDF from the 
characteristic function is not widespread in statistical 
applications (one important exception is the field of financial 
mathematics and econometrics), and in general, not well 
implemented in relevant software packages.  

In [28], Korczynski, Cox, and Harris suggested and 
illustrated the use of convolution principles in metrology 
applications. Their suggested approach was based on 
consecutive replacing of the convolution integrals by the 
convolution sums evaluated by using the fast Fourier transform 
(i.e. without direct using the exact characteristic functions), to 
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form the probability distribution for the output quantity in the 
measurement model of additive, linear or generalized linear 
form. 

If compared with the here proposed approach based on 
combining and inverting the exact characteristic functions, the 
numerical precision of their suggested approach can quickly 
deteriorate with the growing number of the required 
convolution integrals. 

In fact, in metrological applications a number of 
measurement models used in uncertainty evaluation are, at least 
approximately (up to reasonable level), of the additive linear 
form 
𝑌 =  𝑐1𝑋1 + ⋯  + 𝑐𝑛𝑋𝑛, (1) 
where the input quantities 𝑋1, … ,𝑋𝑛  are independent random 
variables with known probability distributions,  𝑋𝑗 ∼  𝐹𝑋𝑗 , for 
𝑗 = 1, … ,𝑛, possibly parametrized by 𝜃𝑗. Here, 𝑐1, … , 𝑐𝑛 
denote the known constants and 𝑌 represents the univariate 
output quantity (a random variable with an unknown 
distribution to be determined). 

The characteristic function of a continuous univariate 
random variable 𝑋 ∼  𝐹𝑋, with its probability density 
function pdf𝑋(𝑥), is defined as a Fourier transform of its PDF,  

cf𝑋(𝑡) = ∫ 𝑒𝑖𝑖𝑖∞
−∞ pdf𝑋(𝑥) 𝑑𝑑,   𝑡 ∈ 𝑹  (2) 

Analytical expressions of the characteristic functions are known 
for many standard probability distributions, see e.g. [29]-[31], or 
other available sources. Otherwise, CF could be derived either 
analytically, expressed by using computer-based tools, e.g. by 
using MATHEMATICA, or evaluated numerically.  
In Table 1 we present some selected characteristic functions of 
the univariate distributions, frequently used in metrological 
applications. Compare the presented distributions with those in 
Table 1 in [2]. Notice that the characteristic functions of the 
symmetric zero-mean distributions are purely real functions of 
the argument 𝑡 ∈ 𝑹. 

Deriving CF of a weighted sum of independent random 
variable is a simple and trivial task. Let cf𝑋𝑗(𝑡) denote the 
characteristic function of 𝑋𝑗. The characteristic function of 𝑌 
defined by (1) is 
cf𝑌(𝑡) = cf𝑋1(𝑐1𝑡)⋯  cf𝑋𝑛(𝑐𝑛𝑡). (3) 

For illustration, in Figure 1 we plotted the CF of a linear 
combination of two independent chi-squared random variables 
with 𝜈1 = 1  and 𝜈10 = 10 degrees of freedom, evaluated for 
𝑡 ∈ (−1,1).  

Here we shall assume that the considered characteristic 
functions of the input and/or output quantities, the random 
variables 𝑋1, … ,𝑋𝑛 and 𝑌 are known or can be easily derived. 
Then, by the Fourier inversion theorem, the PDF of the 
random variable 𝑌 is given by 

pdf𝑌(𝑦) = 1
2𝜋 ∫ 𝑒−𝑖𝑖𝑖∞

−∞ cf𝑌(𝑡) 𝑑𝑑,   𝑦 ∈ 𝑹. (4) 

Analytical derivation of the PDF by using the (inverse) 
Fourier transform (4) is available only in special cases. Thus, in 
most practical situations, a numerical derivation of the 
PDF/CDF from the CF is an indispensable tool. 

In the next section we present two simple but frequently 
very efficient approaches (approximate numerical methods) for 
inversion of the characteristic function together with a detailed 
description of their algorithmic implementations, which are 
suitable for typical metrological applications. 

3. NUMERICAL INVERSION OF THE CHARACTERISTIC 
FUNCTION 

The exact inverse Fourier transform (4) can be naturally 
approximated by the truncated integral form, 

pdf𝑌(𝑦) = 1
2𝜋 ∫ 𝑒−𝑖𝑖𝑖𝑇

−𝑇 cf𝑌(𝑡) 𝑑𝑑,  (5) 

Table 1. Characteristic functions of continuous univariate distributions used 
in metrological applications (selected symmetric zero-mean distributions 
and non-negative distributions). Here, Kν(z) denotes the modified Bessel 
function of the second kind, Jν(z) is the Bessel function of the first kind, and 
U(a, b, z) is the confluent hypergeometric function of the second kind. 

Probability  
distribution 

 
Characteristic function (CF) 
 

 
Gaussian  
𝑁(0,1)   

cf(𝑡) = 𝑒−
1
2 𝑡2  
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 𝑡𝜈    cf(𝑡) = 1

2
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 �𝜈
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𝑡
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𝜆−𝑖𝑖 

   
𝜆 > 0  rate 
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𝛽
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𝜒𝜈2   
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𝜈
2   

𝜈 > 0  degrees of freedom 
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𝐹𝜈1,𝜈2  cf(𝑡) =
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2 �

Γ�𝜈22 �
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Figure 1. Real (blue) and imaginary (red) part of the characteristic function 
of 𝑌 = 10 𝑋𝜒12 + 𝑋𝜒10 

2 — the linear combination of two independent chi-
squared random variables with 𝜈1 = 1 and 𝜈1 = 10 degrees of freedom, 
evaluated for 𝑡 ∈ (−1,1). 
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where 𝑇 is a sufficiently large (real) value, and the integrand is a 
complex (oscillatory) function, which is assumed to decay to 
zero reasonably fast for |𝑡| → ∞ (as is typical for continuous 
distributions used in metrological applications). Note that the 
selection of the integration limit 𝑇 and the speed of integrand 
function decay contribute significantly to the truncation error 
of this approximation.  

In general, the required integral can be evaluated by any 
suitable numerical quadrature method. Frequently, a simple 
trapezoidal rule gives fast and satisfactory results. However, 
caution is necessary if the integrand is a highly oscillatory 
function, what is the case if abs(𝑦) is a large value from the tail 
area of the distribution, as e.g. the 99 % quantile. In such 
situations a more advanced quadrature method should be used, 
typically in combination with efficient root-finding algorithms 
and algorithms for accelerated computing of the limit values of 
the sums of alternating series (not considered here), see e.g., 
[21], [32]. Note that the selection of the integration method 
significantly contributes to the integration error of this 
approximation. Figure 2 illustrates the problem of integrating 
the highly oscillatory integrand function. 

For typical metrological applications we suggest to consider 
algorithms based on the Gil-Pelaez inversion formulae (6)-(7) 
and the approximate discrete Fourier transform (21) resp. (22), 
based on the simple trapezoidal rule for computing the required 
sub-integrals. The possible numerical error of the results (i.e. 
the truncation error and the integration error) can be controlled 
by selecting a proper truncation limit 𝑇 (sufficiently large, 
leading to a small truncation error), and by dividing the selected 
integration interval (0,𝑇) to a large number, say 𝑁, of small 
sub-intervals, where the trapezoidal rule provides a satisfactorily 
good numerical approximation (with small integration error) of 
the true integral value. For theoretical results on how to control 
the truncation and integration errors in such and similar 
situations see, e.g., [35]. 

3.1. The Gil-Pelaez inversion formulae 
In [33], Gil-Pelaez derived the inversion formulae, suitable 

for numerical evaluation of the PDF and/or the CDF, which 

require integration of a real-valued function, only. The PDF is 
given by 

pdf𝑌(𝑦) = 1
 𝜋 ∫ ℜ�𝑒−𝑖𝑖𝑖cf𝑌(𝑡)� ∞

0 𝑑𝑑. (6) 

Further, if 𝑦 is a continuity point of the cumulative 
distribution function of 𝑌, the CDF is given by 

cdf𝑌(𝑦) = 1
2
− 1

 𝜋 ∫ ℑ �𝑒
−𝑖𝑖𝑖cf𝑌(𝑡)

𝑡
� ∞

0 𝑑𝑑. (7) 

By ℜ(𝑓(𝑡)) and ℑ(𝑓(𝑡)) we denote the real and imaginary 
part of the complex function 𝑓(𝑡), respectively. 

Numerical inversion of the characteristic function based on 
(6) and (7) have been successfully implemented for evaluation 
of the distribution function of a linear combination of 
independent chi-squared RVs by Imhof in [34] and by Davies in 
[35]. Further, Gil-Pelaez's method has been implemented in the 
algorithm tdist, see [36] and [37], for computing the 
distribution of a linear combination of independent Student's t 
random variables and/or other symmetric zero-mean random 
variables, and also for computing the distribution of a linear 
combination of independent inverted gamma random variables 
suggested in [38], and the distribution of a linear combination 
of independent log-Lambert 𝑊 × 𝜒𝜈2 RVs, [39]. In [40], the 
algorithm tdist has been suggested and applied for computing 
the 95 % state-of-knowledge interval (considered as the 
approximate 95 % confidence interval) for the common mean 
value in the inter-laboratory comparisons with systematic 
effects (biases). 

In general, the integrals in (6) and (7) can be computed by 
any numerical quadrature method, possibly in combination with 
efficient root-finding algorithms and accelerated computing of 
limits of the alternating series, as considered, e.g., in [20] and 
[25]. Frequently, (6) and (7) can be efficiently approximated by 
a simple trapezoidal quadrature: 

       pdf𝑌(𝑦) ≈
𝛿𝑡
 𝜋 
�𝑤𝑗

𝑁

𝑗=0

 ℜ�𝑒−𝑖𝑡𝑗𝑦cf𝑌�𝑡𝑗�� 

 

 ≈ 𝛿𝑡
 𝜋 
�
𝑤0 + ∑ 𝑤𝑗𝑁

𝑗=1 cos�𝑡𝑗𝑦�ℜ �cf𝑌�𝑡𝑗��

       + ∑ 𝑤𝑗𝑁
𝑗=1 sin�𝑡𝑗𝑦�ℑ �cf𝑌�𝑡𝑗�� 

� (8) 

       cdf𝑌(𝑦) ≈
1
2
−
𝛿𝑡
 𝜋 
�𝑤𝑗

𝑁

𝑗=0

 ℑ�
𝑒−𝑖𝑡𝑗𝑦cf𝑌�𝑡𝑗�

𝑡𝑗
� 

 

≈ 1
2
− 𝛿𝑡

 𝜋 

⎝

⎜
⎛

𝑤0(mean(𝑌) − 𝑦)  +                     

      +∑ 𝑤𝑗𝑁
𝑗=1 cos�𝑡𝑗𝑦�ℑ �

cf𝑌�𝑡𝑗�

𝑡𝑗
�

       + ∑ 𝑤𝑗𝑁
𝑗=1 sin�𝑡𝑗𝑦�ℜ�

cf𝑌�𝑡𝑗�

𝑡𝑗
� 
⎠

⎟
⎞

, (9) 

where 𝑁 is a sufficiently large number of (equidistant) sub-
intervals of (0,𝑇), 𝑤𝑗 are the appropriate quadrature weights, 
and 𝑡𝑗 denote the appropriate (equidistant) nodes from the 
interval (0,𝑇), for sufficiently large 𝑇.  

In particular, for the trapezoidal quadrature rule we set  
• 𝛿𝑡 = 𝑇

𝑁
 or alternatively 𝛿𝑡 = 2𝜋

𝐵−𝐴
, which gives 𝑇 = 𝑁 2𝜋

𝐵−𝐴
 , 

• 𝑤0 = 𝑤𝑁 = 1
2
, and 𝑤𝑗 = 1 for 𝑗 = 1, … ,𝑁 − 1, 

• 𝑡𝑗 = 𝑗𝛿𝑡 for 𝑗 = 0, … ,𝑁, with 𝑇 = 𝑡𝑁 = 𝑁𝛿𝑡. 
Here, the interval (𝐴,𝐵) specifies the range of typical values 

𝑦, i.e. a large part of the distribution support of the random 
variable 𝑌.  

 
Figure 2. Integrand functions for computing the PDF/CDF of the chi-squared 
distributed random variable, 𝑌 ∼ 𝜒12, at 𝑦 = 15, computed by the Gil-Pelaez 

inversion formulae of its characteristic function cfY(𝑡) =  (1 − 2𝑖𝑖)−
1
2. The 

plotted integrand functions of the integrals in (6) and (7) are evaluated for 
𝑡 ∈ (0,𝑇), 𝑇 = 5. The red circles depict the zeros (roots) of the integrand 
functions on (0,𝑇). The total integral can be computed as an infinite sum of 
sub-integrals - the limit value of the sum of alternating series. 

http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
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As a simple rule of thumb, if the (optimum) value of 𝑇 is 
unknown we suggest to start with the application of the six-
sigma-rule, i.e. set the typical range (𝐴,𝐵) as an intersection of 
the natural parametric space of 𝑌 with the interval (𝐿,𝑈) (e.g., 
(𝐴,𝐵) = (𝐿,𝑈) ∩ 𝑹  or (𝐴,𝐵) = (𝐿,𝑈) ∩ 𝑹+, with 

• 𝐿 =  mean(𝑌) − 6 std(𝑌), 
• 𝑈 =  mean(𝑌) + 6 std(𝑌), 

where mean(𝑌) and std(𝑌) represent the expectation and the 
standard deviation of the probability distribution of 𝑌, and 
define 𝑇 = 𝑁 2𝜋

𝐵−𝐴
 for some pre-selected fixed 𝑁. Note that the 

value of 𝑇 should be kept sufficiently large, such that the 
characteristic function is sufficiently small for all 𝑡 > 𝑇, i.e. 
𝑎𝑎𝑎(cf𝑌(𝑡)) < 𝜖 for small 𝜖, say 𝜖 = 10−12. This can be 
effectively controlled by using a proper value (sufficiently large) 
of 𝑁.  

Further, for computing the leading term in (9), we use the 
result from [36]: If the mean (expectation) of 𝑌 exists, then  

lim𝑡→0  ℑ�𝑒
−𝑖𝑖𝑖cf𝑌(𝑡)

𝑡
� =  mean(𝑌) − 𝑦 . (10) 

The required mean(𝑌) and std(𝑌) can be evaluated 
analytically, from the moments of the input variables, or 
approximately, by using numerical differentiation of the 
characteristic function of  𝑌, cf𝑌(𝑡). In particular,  

mean(𝑌) ≈ 1
12𝑖ℎ

�cf𝑌(−2ℎ) − 8cf𝑌(−ℎ)
+8cf𝑌(−ℎ) − cf𝑌(2ℎ)� , (11) 

std(𝑌) ≈ �m2(𝑌) −  mean2(𝑌)� , (12) 

where 

m2(𝑌) ≈ 1
144ℎ2

⎝

⎜
⎛

cf𝑌(−4ℎ) − 16cf𝑌(−3ℎ)
+64cf𝑌(−2ℎ) + 16cf𝑌(−ℎ)

−130
+16cf𝑌(ℎ) + 64cf𝑌(2ℎ)
−16cf𝑌(3ℎ) + cf𝑌(4ℎ) ⎠

⎟
⎞

 , (13) 

for any small ℎ > 0, e.g., ℎ = 10−4. This numerical approach is 
applicable even in the cases when the theoretical moments of 
the considered distribution, defined by cf𝑌(𝑡), do not exist (e.g., 
for the Student’s t distribution with 1 or 2 degrees of freedom). 

The truncation limit 𝑇 = 𝑁𝛿𝑡 = 𝑁 2𝜋
𝐵−𝐴

 depends on 𝑁 and 
(𝐴,𝐵). The trade-off between the values of 𝐵 − 𝐴, 𝑁, 𝛿𝑡 and 
𝑇, strongly depends on the particular distribution of 𝑌 and its 
CF. 

For example, for a highly precise numerical inversion of the 
standard normal CF, cfY(𝑡) = 𝑒−

1
2 𝑡2, computed in double 

precision arithmetic with precision better than 𝜖 = 10−14, it is 
sufficient to set (𝐴,𝐵) = (−8,8) with 𝐵 − 𝐴 = 16, 𝑁 = 25 =
32, leading to 𝛿𝑡 = 𝜋

8
 and 𝑇 = 4 𝜋 with cfY(𝑇) = 𝑒−

1
2 𝑇2 ≈ 5 ×

10−35. On the other hand, the numerical inversion of the 
rectangular CF given by cfY(𝑡) = sin (𝑡)

𝑡
 requires in double 

precision arithmetic the value 𝑇 = 1014 to get 𝑎𝑎𝑎�cf(𝑡)� ≤
10−14 for 𝑡 > 𝑇. For the natural choice of (𝐴,𝐵) = (−1,1) 
with 𝐵 − 𝐴 = 2, this suggests to set 𝑁 ≈ 1013, what is an 
unacceptable value, and thus it reveals that the simple 
trapezoidal rule is not a suitable integration method for the 
highly precise numerical inversion of the rectangular 
distribution  CF. Fortunately, CF of the output quantity 𝑌 in 
typical metrological situations based on linear measurement 
models is a well behaved function, and the methods based on 

simple trapezoidal quadrature are efficient to provide good 
numerical approximations of the true values. 

In general, the pre-selected values of 𝑇 and 𝑁 should be 
checked and/or properly corrected. A simple diagnostic check 
is based on evaluating abs(cf𝑌(𝑇)). For large 𝑇 this should be 
a small value (smaller that the accepted truncation error). This 
check allows to control also the level of 𝑁, given the already 
fixed and sufficiently large interval (𝐴,𝐵). 

We note that the presented quadrature method requires only 
one evaluation of the characteristic function cf𝑌�𝑡𝑗� at 𝑡𝑗, 
𝑗 = 1, … ,𝑁, for any 𝑦 ∈ (𝐴,𝐵) in pdf𝑌(𝑦) and cdf𝑌(𝑦), 
respectively. Moreover, the computation is further simplified if 
𝑌 is a continuous random variable with a symmetric zero-mean 
distribution, i.e. with purely real CF,  

pdf𝑌(𝑦) ≈ 𝛿𝑡
 𝜋 
�
1
2

+ ∑ cos�𝑡𝑗𝑦�cf𝑌�𝑡𝑗�𝑁−1
𝑗=1

+ 1
2

cos(𝑡𝑁𝑦)cf𝑌(𝑡𝑁)
� , (14) 

cdf𝑌(𝑦) ≈ 1
2
− 𝛿𝑡

 𝜋 
�
−𝑦

2
+ ∑ sin�𝑡𝑗𝑦�

 cf𝑌�𝑡𝑗�

𝑡𝑗
 𝑁−1

𝑗=1

+ 1
2

sin(𝑡𝑁𝑦)  cf𝑌(𝑡𝑁)
𝑡𝑁

 
� . (15) 

Finally, the quantile function (QF) can be evaluated by using 
the iterative Newton-Raphson scheme, based on repeated 
evaluations of the PDF/CDF, see (8)-(9) and/or (14)-(15).  

 

 

In particular, for a fixed probability level 𝑝 ∈ (0,1), the 𝑝-
quantile of the (continuous) distribution of 𝑌, say 𝑞 = qf𝑌(𝑝), 
is given as a solution (fixed point) of the following iterative 
scheme,  

qf𝑌𝑘+1(𝑝) =  qf𝑌𝑘(𝑝)  −
�cdf𝑌�qf𝑌

𝑘(𝑝)�−𝑝�

pdf𝑌�qf𝑌
𝑘(𝑝)�

 , (16) 

where 𝑘 = 0,1, …, and the starting value qf𝑌0(𝑝) is set as, e.g., 
qf𝑌0(𝑝) =  mean(𝑌), defined by (11). 

%% EXAMPLE (MATLAB ALGORITHM CF2DISTGP) 
% 
% PDF and CDF of a linear combination of RVs: 
% Y = c1*X1 + c2*X2 + c3*X3 + c4*X4 + c5*X5, 
% where, 
% X1 ~ Normal(0,1) with c1=1, 
% X2 ~ Student's t with 1 df and c2=1, 
% X3 ~ Rectangular on (-1,1) with c3=5, 
% X4 ~ Triangular on (-1,1) with c4=1, 
% X5 ~ U-distribution on (-1,1) with c5=10 
  
cfN = @(t) exp(-t.^2/2); 
cft = @(t,nu) min(1,besselk(nu/2, ... 
      abs(t).*sqrt(nu),1) .* ... 
      exp(-abs(t).*sqrt(nu)) .* ... 
      (sqrt(nu).*abs(t)).^(nu/2) / ... 
      2^(nu/2-1)/gamma(nu/2)); 
cfR = @(t) min(1,sin(t)./t); 
cfT = @(t) min(1,(2-2*cos(t))./t.^2); 
cfU = @(t) besselj(0,t); 
c   = [1 1 5 1 10]; nu = 1; 
cfY = @(t) ... 
      cfN(c(1)*t) .* ... 
      cft(c(2)*t,nu) .* ... 
      cfR(c(3)*t) .* ... 
      cfT(c(4)*t) .* ... 
      cfU(c(5)*t); 
y = linspace(-50,50,201)'; 
 
[result,cdf,pdf] = cf2DistGP(cfY,y); 
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A working version of the MATLAB algorithm cf2DistGP for 
computing the PDF/CDF by numerical inversion of the 
characteristic function, based on the Gil-Pelaez inversion 
formulae, is presented in Appendix A. 

For illustration, the MATLAB code presented above evaluates 
the PDF and CDF of the output variable 𝑌, which is a linear 
combination of the independent random variables with a 
normal, Student's t, rectangular, triangular and arcsine 
distributions, i.e. 𝑌 = 𝑋𝑁 + 𝑋𝑡𝜈 + 5𝑋𝑅 + 𝑋𝑇 + 10𝑋𝑈, by using 
the algorithm cf2DistGP with its default settings of 𝑇 and 𝑁. 

Similarly, the PDF/CDF of the random variable 𝑌 = 𝑋𝑁 +
𝑋𝑡𝜈 + 5𝑋𝑅 + 𝑋𝑇 + 10𝑋𝑈 can be evaluated by using the 
MATLAB algorithm tdist, see also Figure 3: 
 

 
 

3.2. Numerical inversion of the characteristic function by using 
the FFT algorithm 

This approach for computing the PDF by numerical 
inversion of the characteristic function by using the FFT 
algorithm is based on the results by Hürlimann in [41]. 
Alternatively, for other applications based on using the 

fractional fast Fourier transform (FRFT), see [42] and also [43]-
[46]. 

Here we shall approximate the continuous Fourier transform 
(CFT), say  

𝐹(𝑦) = ∫ 𝑒−𝑖2𝜋𝜋𝜋∞
−∞ 𝑓(𝑢) 𝑑𝑑,  (17) 

by a discrete Fourier transform (DFT). The DFT can be 
efficiently evaluated by using the FFT algorithm that computes 
the same result as the DFT, but much faster.  

For complex numbers 𝑓0, … , 𝑓𝑁−1 the DFT is defined as 

𝐹𝑘 = ∑ 𝑒−𝑖2𝜋𝜋
𝑗
𝑁  𝑓𝑗𝑁−1

𝑗=0 , 𝑘 = 0, … ,𝑁 − 1.    (18) 
Formally, here we shall use the following notation,  

𝐅𝑁 = 𝐹𝐹𝐹(𝐟𝑁),   (19) 

where 𝐟𝑁 = (𝑓0, … , 𝑓𝑁−1) and 𝐅𝑁 = (𝐹0, … ,𝐹𝑁−1). 
The relationship between the CF and the PDF is given by 

the (inverse) continuous Fourier transform defined by (4). For a 
sufficiently large interval (−𝑇,𝑇), it is possible to approximate 
a PDF by (5). Here we shall consider the integral 
approximation, based on the mid-point integration rule, 
∫ 𝑓(𝑥)𝑑𝑑 ≈ 𝑓(𝑎)+𝑓(𝑏)

2
 (𝑏 − 𝑎)𝑏

𝑎 , which corresponds to the 
trapezoidal quadrature. For more alternative approaches based 
on more sophisticated integration rules see, e.g., [39]. 

Similarly as before, let (𝐴,𝐵) denote a sufficiently large 
interval, where the distribution of 𝑌 is concentrated. A 
reasonable rule for determining (𝐴,𝐵) can be based, for 
example, on the six-sigma-rule, or its modifications, by using an 
altered multiplication coefficient (e.g., use 10 instead of 6). 

Let 𝑦𝑘 = 𝐴 + 𝑘𝛿𝑦, with 𝛿𝑦 = 𝐵−𝐴
𝑁

, and  𝑘 = 0, … ,𝑁 − 1. 
For 𝑁 large, 𝑇 = 𝜋/𝛿𝑦 is also large, and from (5), by using 
𝑡 = 2𝜋𝜋, 𝑑𝑡 =  2𝜋𝜋𝜋, and 𝑑𝑑 = 1

𝐵−𝐴
, we get 

pdf𝑌(𝑦𝑘) ≈ 1
2𝜋 ∫ 𝑒−𝑖2𝜋𝜋𝑦𝑘

1
2𝛿𝑦

− 1
2𝛿𝑦

cf𝑌(2𝜋𝜋) 𝑑𝑑 . (20) 

Now, we shall approximate the integral (19) by using the 
approximate trapezoidal quadrature rule, for each of the 𝑁 sub-
intervals. Thus,  

pdf𝑌(𝑦𝑘) ≈ 1
𝐵−𝐴

 ∑ 𝑒−𝑖2𝜋𝑢𝑗𝑦𝑘𝑁−1
𝑗=0 cf𝑌�2𝜋𝑢𝑗� , (21) 

 
Figure 3. The probability density function (PDF) and the cumulative distribution function (CDF) of a random variable 𝑌 = ∑ 𝑐𝑗𝑋𝑗5

𝑗=1 , with 𝑋1 ∼ 𝑁(0,1), 
𝑋2 ∼ 𝑡𝜈=1, 𝑋3 ∼ 𝑅(−1,1), 𝑋4 ∼ 𝑇(−1,1),𝑋5 ∼ 𝑈(−1,1), and coefficients 𝑐 = (𝑐1, … , 𝑐5) = (1,1,5,1,10), evaluated by numerical inversion of its 
characteristic function by the MATLAB algorithm tdist, see also the Examples. 

%% EXAMPLE (MATLAB ALGORITHM TDIST) 
% 
% TDIST at Matlab Central File Exchange: 
% http://www.mathworks.com/matlabcentral/ 
% /fileexchange/4199-tdist 
% 
% PDF and CDF of a linear combination of RVs 
% Y = c1*X1 + c2*X2 + c3*X3 + c4*X4 + c5*X5 
% with: 
% X1 ~ Normal(0,1) [we set df1=Inf] with  c1=1, 
% X2 ~ Student's t with 1 df [set df2=1], c2=1, 
% X3 ~ Rectangular on (-1,1) [set df3=-1],c3=5, 
% X4 ~ Triangular on (-1,1) [set df4=-2], c4=1, 
% X5 ~ U-distribution on (-1,1) [df5=-3], c5=10 
  
df      = [Inf 1 -1 -2 -3]; 
coefs   = [1 1 5 1 10]; 
[pdf,y] = tdist([],df,coefs,'PDF'); 
cdf     = tdist(y,df,coefs,'CDF'); 
  
figure; plot(y,pdf); grid 
figure; plot(y,cdf); grid 
 

 

http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
http://www.mathworks.com/matlabcentral/fileexchange/4199-tdist
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where 𝑢𝑗 =
1
2+𝑗−

𝑁
2

𝐵−𝐴
, 𝑗 = 0, … ,𝑁 − 1. 

From that, by using 𝑒𝑖𝑖 = −1, the expressions for 𝑢𝑗  and 
𝑦𝑘, and the DFT defined by (17), we finally get the formal 
relationship 
𝐩𝐩𝐩 = 𝐂⊙ 𝐹𝐹𝐹(𝐃⊙ 𝐜𝐜), (22) 
where ⊙ denotes the dot product (element wise multiplication), 

• 𝐩𝐩𝐩 = �pdf𝑌(𝑦0), … , pdf𝑌(𝑦𝑁−1)�, 
• 𝐂 = (𝐶0, … ,𝐶𝑁−1), with 

• 𝐶𝑘 = 1
𝐵−𝐴

(−1)��1−
1 
𝑁��

𝑁𝑁
𝐵−𝐴+𝑘�� , 𝑘 = 0, … ,𝑁 − 1, 

• 𝐃 = (𝐷0, … ,𝐷𝑁−1), with 

• 𝐷𝑘 = (−1)−
2𝐴
𝐵−𝐴𝑘 , 𝑘 = 0, … ,𝑁 − 1, 

• 𝐜𝐜 = �cf𝑌(𝑡0), … , cf𝑌(𝑡𝑁−1)�, with  

• 𝑡𝑘 = 2𝜋
𝐵−𝐴

�1
2

+ 𝑘 − 𝑁
2
�, 𝑘 = 0, … ,𝑁 − 1. 

Further, CDF is evaluated here by simple cumulative sum 
from the evaluated PDF values, and QF is evaluated by 
interpolation from the CDF.  

A working version of the MATLAB algorithm cf2DistFFT for 
computing the PDF/CDF/QF by numerical inversion of the 
characteristic function, based on the FFT algorithm, is 
presented in Appendix B.  

For illustration, the MATLAB code presented below evaluates 
the PDF/CDF of the output variable 𝑌 = 10 𝑋𝜒12 + 𝑋𝜒102 , by 
using the algorithm cf2DistFFT with its default settings of 
(𝐴,𝐵) and 𝑁. 

 

 
 
 

Other specific versions of the algorithm for computing the 
PDF/CDF/QF of a linear combination of independent 
random variables with the Fisher-Snedecor’s F-distributions 
and the log-normal distributions, by numerical inversion of the 
characteristic function by using the FFT algorithm, are available 
at the MATLAB CENTRAL FILE EXCHANGE as the algorithm 
Fdist, file ID: 56262, and the algorithm logNdist, file ID: 56512, 
respectively. 

4. COMPARISON OF THE CF APPROACH AND THE MONTE 
CARLO METHOD 

The main advantage of the Monte Carlo methods lies in 
their simplicity and asymptotic consistency. A disadvantage of 
the Monte Carlo methods lies in the large computational 
demands, typically required in order to achieve the pre-specified 
accuracy level. On the other hand, application of the CF 
approach offers principal theoretical exactness which could be, 
however, influenced by unacceptable numerical errors (i.e. the 
truncation and the integration errors), if not properly used. 

For illustration, here we consider the linear measurement 
model for calibration of a coaxial step attenuator as considered 
in [47], a model typical for metrological applications.  

We consider this example in order to compare results based 
on the CF approach and the Monte Carlo method and to 
illustrate the applicability and/or advantage of the suggested 
methods for potential users in metrology applications. For 
more details about this specific example see [47], example S7, 
and/or [48]. 

The linear measurement model of the attenuation 𝐿𝑋 of the 
attenuator to be calibrated is given by 
𝐿𝑋 =  𝑐𝑐𝑐𝑐𝑐 + 𝐿𝑆 + 𝛿𝐿𝑆 + 𝛿𝐿𝐷 + 𝛿𝐿𝑀 + 𝛿𝐿𝐾 + 𝛿𝐿𝑖𝑖 −
𝛿𝐿𝑖𝑖 +  𝛿𝐿0𝑏 − 𝛿𝐿0𝑎, (23) 

with the following information about the distributions of the 
input quantities (available from the given uncertainty budget, 
see S7.12 in [47] with the correction as presented in [48]): 

• 𝑐𝑐𝑐𝑐𝑐 =  30.04 + 0.003 = 30.043, 
• 𝐿𝑆    ∼  0.0090 × 𝑁(0,1), 

• 𝛿𝐿𝑆 ∼  (0.0025/�1
3
) × 𝑅(−1,1), 

• 𝛿𝐿𝐷 ∼ (0.0011/�1
2
) × 𝑈(−1,1), 

• 𝛿𝐿𝑀 ∼ (0.0200/�1
2
) × 𝑈(−1,1), 

• 𝛿𝐿𝐾 ∼ (0.0017/�1
2
) × 𝑈(−1,1), 

• 𝛿𝐿𝑖𝑖 ∼ (0.0003/�1
3
) × 𝑅(−1,1) 

• 𝛿𝐿𝑖𝑖 ∼ (0.0003/�1
3
) × 𝑅(−1,1), 

• 𝛿𝐿0𝑏 ∼ 0.0020 × 𝑁(0,1), 
• 𝛿𝐿0𝑎 ∼ 0.0020 × 𝑁(0,1). 

The algorithms cf2DistGP, with default option parameters 
based on the six-sigma-rule and pre-selected 𝑁 = 210 = 1024,  
evaluated the support interval (𝐴,𝐵) = (−0.1341,0.1341), 
and hence 𝑇 = 23989, with 𝛿𝑡 = 𝑇

𝑁
= 23.4.  

Then, the 97.5 %-quantile of 𝑌 =  𝐿𝑋 − 𝑐𝑐𝑐𝑐𝑐 was 
calculated as 𝑞 = 0.03900448275179. Thus, the calculated 
95 % state-of-knowledge interval for the attenuation 𝐿𝑋 is given 
as 30.043 ∓ 0.039.  

The basic diagnostic check ensures the highest precision 
of the presented calculations in double precision arithmetic, as 
abs(cf𝑌(𝑇))=0 (i.e. the value equals to the machine zero, 
which is here defined as 4.94 × 10−324). The used computer 
time was  𝑡 =  3.9 × 10−4 s. 

Further, here we also present the estimated values of the 
required 97.5 % quantile computed by the Monte Carlo method 
for sample sizes 𝑀, with 𝑀 = 104, 105, 106, 107, and 108. 

%% EXAMPLE (MATLAB ALGORITHM CF2DISTFFT) 
% 
% Distribution of a linear combination of RVs 
% (chi-squared RVs with 1 and 10 DFs) 
% Y = 10*X_{\chi^2_1} + X_{\chi^2_10} 
  
df1 = 1; 
df2 = 10; 
cfChi2_1  = @(t) (1-2i*t).^(-df1/2); 
cfChi2_10 = @(t) (1-2i*t).^(-df2/2); 
cfY       = @(t) cfChi2_1(10*t) .* cfChi2_10(t); 
 
clear options 
options.isPositiveSupport = true; 
result = cf2DistFFT(cfY,[],[],options); 
  
% PLOT THE CF of Y 
t = linspace(-1,1,501); 
figure 
plot(t,real(cfY(t)),t,imag(cfY(t)));grid 
xlabel('t'); 
ylabel('Characteristic function'); 
title('Y = 10*X_{\chi^2_1}+X_{\chi^2_{10}}') 

http://www.mathworks.com/matlabcentral/fileexchange/56262-fdist
http://www.mathworks.com/matlabcentral/fileexchange/56512-logndist
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The estimated values of the 97.5 % quantile 𝑞, and the 

computer time 𝑡 (in seconds), used for the sample size 𝑀: 
• 𝑀 = 104,  𝑞 = 0.039343812021804,  𝑡 = 0.07, 
• 𝑀 = 105,  𝑞 = 0.038985244853524, 𝑡 = 0.08, 
• 𝑀 = 106,  𝑞 = 0.038952503603421,  𝑡 = 0.75, 
• 𝑀 = 107,  𝑞 = 0.038998144396413, 𝑡 = 7.49, 
• 𝑀 = 108,  𝑞 = 0.039003626106614,  𝑡 = 153.2. 

This clearly illustrates the advantages and computational 
efficiency of the proposed approach over the standard Monte 
Carlo methods, especially if high precision of the computed 
(estimated) quantiles is required. 

5. CONCLUSIONS 

We suggest to consider numerical methods for derivation of 
the state-of-knowledge PDF/CDF of the output quantity in 
linear measurement models from its characteristic function. 

Such approach can be used to form the probability 
distribution for the output quantity of a measurement model of 
additive, linear or generalized linear form, and can be 
considered as an alternative tool to the uncertainty evaluation 
based on the Monte Carlo methods.  

Here we have presented two simple but efficient approaches 
for numerical inversion of the characteristic function, which are 
especially suitable for metrological applications.  

The suggested numerical approaches are based on the Gil-
Pelaez inverse formula and on the approximation by discrete 
Fourier transform (DFT) and the FFT algorithm for computing 
the PDF/CDF of (univariate) continuous random variables.  

As we have explained and illustrated, the suggested CF 
approach should be considered as an alternative to the standard 
approach based on the Monte Carlo methods (as considered 
e.g. in Supplement 1 – Propagation of distributions using a Monte Carlo 
method [2]) in specific situations, i.e. for evaluating the state-of-
knowledge probability distributions of the output quantity in a 
linear measurement model, especially if the highest precision of 
the reported distribution quantiles is required. However, 
numerical errors of such results should be properly controlled. 

For illustration purposes, here we present working versions 
of the MATLAB codes of the suggested algorithms (cf2DistGP 
and cf2DistFFT), as well as some simple examples in order to 
illustrate the applicability of the suggested methods. 

Although the methods for inverting characteristic functions 
for obtaining the probability distribution functions have been 
studied for long time, especially in statistical literature, and the 
possible applications are much more general than those 
motivated by metrology, surprisingly, such methods are still not 
widespread and used in engineering applications and only rarely 
used among statisticians. One possible reason might be that the 
characteristic functions and the algorithms for numerical 
inversions are not directly available in standard (statistical) 
software packages, like e.g., R or MATLAB. 

Systematic development of the methods, algorithms and the 
software toolbox (developed for R and/or MATLAB) for 
computing, combining and inverting the characteristic 
functions is our highly desirable goal for the next future. 
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%% COMPARISON / CF APPROACH & MONTE CARLO METHOD 
 
% CF APPROACH: 
 
% Distribution and quantile of the output  
% quantity in linear measurement model  
% Y = L_S + δL_S + δL_D + δL_M + δL_K +  
%     δL_ib - δL_ia + δL_0b - δL_0a  
% 
 
const = 30.043; 
prob  = 0.975; 
c     = [0.009 0.0025/sqrt(1/3) ... 
         0.0011/sqrt(1/2) 0.0200/sqrt(1/2) ... 
         0.0017/sqrt(1/2) 0.0003/sqrt(1/3) ... 
        -0.0003/sqrt(1/3) 0.0020 -0.0020 ]; 
cfN   = @(t) exp(-t.^2/2); 
cfR   = @(t) min(1,sin(t)./t); 
cfU   = @(t) besselj(0,t); 
cfY   = @(t) cfN(c(1)*t) .* cfR(c(2)*t) .* ... 
        cfU(c(3)*t) .* cfU(c(4)*t) .* ... 
        cfU(c(5)*t) .* cfR(c(6)*t) .* ... 
        cfR(c(7)*t) .* cfN(c(8)*t) .* ... 
        cfN(c(9)*t); 
 [result,cdf,pdf,q_CF] = cf2DistGP(cfY,[],prob) 
 
% 95% state-of-knowledge interval / CF APPROACH: 
I_CF = const + [-q_CF,q_CF] 
 
 
% MONTE CARLO METHOD: 
 
M     = [10^4 10^5 10^6 10^7 10^8]; 
q_MC  = zeros(5,1); 
time  = zeros(5,1); 
rng; 
for m = 1:5  
    tic; 
    N = randn(M(m),3); 
    R = 2*rand(M(m),3)-1; 
    U = 2*betarnd(0.5,0.5,M(m),3)-1; 
    Y = c(1)*N(:,1) + c(2)*R(:,1) ...                      
        + c(3)*U(:,1) + ... 
        + c(4)*U(:,2) + c(5)*U(:,3) ... 
        + c(6)*R(:,2) + c(7)*R(:,3) ... 
        + c(8)*N(:,2) + c(9)*N(:,3); 
    Y = sort(Y); 
    q_MC(m) = Y(ceil(M(m)*prob)); 
    time(m) = toc; 
end 
 
% 95% state-of-knowledge interval / MC METHOD: 
q = q_MC(5); 
I_MC = const + [-q,q]  



 

ACTA IMEKO | www.imeko.org November 2016 | Volume 5 | Number 3 | 40 

APPENDIX A. MATLAB ALGORITHM CF2DISTGP FOR 
NUMERICAL INVERSION OF THE CHARACTERISTIC 
FUNCTION BASED ON THE GIL-PELAEZ INVERSION 
FORMULAE 

 
 

 
 

function [result,cdf,pdf,qf] =  ... 
    cf2DistGP(cf,x,prob,options) 
% Calculates CDF/PDF/QF from the characteristic  
% function by the Gil-Pelaez inversion formulae,  
% integrated by a simple trapezoidal quadrature. 
% 
% SYNTAX: 
%  [result,cdf,pdf,qf] =  ... 
%    cf2DistGP(cf,x,prob,options) 
  
%% CHECK THE INPUT PARAMETERS 
 
tic; 
narginchk(1, 4); 
  
if nargin < 4, options = []; end 
if nargin < 3, prob = []; end 
if nargin < 2, x = []; end 
 
if ~isfield(options, 'N') 
    options.N = 2^10; 
end 
if ~isfield(options, 'T') 
    options.T = []; 
end 
if ~isfield(options, 'SixSigmaRule') 
    options.SixSigmaRule = 6; 
end 
if ~isfield(options, 'xMean') 
    options.xMean = []; 
end 
if ~isfield(options, 'xStd') 
    options.xStd = []; 
end 
 
if ~isfield(options, 'tolDiff') 
    options.tolDiff = 1e-4; 
end 
 
if ~isfield(options, 'qf0') 
    options.qf0 = (cf(1e-4)-cf(-1e-4))/(2e-4*1i); 
end 
 
if ~isfield(options, 'crit') 
    options.crit = 1e-13; 
end 
 
if ~isfield(options, 'maxiter') 
    options.maxiter = 1000; 
end 
 
if ~isfield(options, 'isPlot') 
    options.isPlot = true; 
end 
 
if ~isfield(options, 'DIST') 
    options.DIST = []; 
end 
 
if ~isempty(options.DIST) 
    xMean         = options.DIST.xMean; 
    cft           = options.DIST.cft; 
    dt            = options.DIST.dt; 
    N             = length(cft); 
    t             = (1:N)' * dt; 
    range         = 2*pi / dt; 
    xMin          = xMean - range/2; 
    xMax          = xMean + range/2; 
    xStd          = []; 
 

else 
    N                 = options.N; 
    T                 = options.T; 
    SixSigmaRule      = options.SixSigmaRule; 
    xMean             = options.xMean; 
    xStd              = options.xStd; 
    h                 = options.tolDiff; 
    cft               = cf(h*(1:4)); 
    if isempty(xMean) 
        xMean = real((-cft(2) ... 
            + 8*cft(1)-8*conj(cft(1)) ... 
            + conj(cft(2)))/(1i*12*h)); 
    end 
    if isempty(xStd) 
        xM2 = real(-(conj(cft(4)) ... 
            - 16*conj(cft(3)) ... 
            + 64*conj(cft(2)) ... 
            + 16*conj(cft(1)) ... 
            - 130 + 16*cft(1) ... 
            + 64*cft(2) ... 
            - 16*cft(3)+cft(4))/(144*h^2)); 
        xStd  = sqrt(xM2 - xMean^2); 
    end 
    if ~isempty(T) 
        dt             = T / N; 
        t              = (1:N)' * dt; 
        cft            = cf(t); 
        cft(N)         = cft(N)/2;  
        range          = 2*pi / dt; 
        xMin           = xMean - range/2; 
        xMax           = xMean + range/2; 
        xStd           = []; 
    else 
        xMin   = xMean - SixSigmaRule * xStd; 
        xMax   = xMean + SixSigmaRule * xStd; 
        range          = xMax - xMin; 
        dt             = 2*pi / range; 
        t              = (1:N)' * dt; 
        cft            = cf(t); 
        cft(N)         = cft(N)/2;  
    end  
    options.DIST.xMean = xMean; 
    options.DIST.cft   = cft; 
    options.DIST.dt    = dt; 
end 
 
%% ALGORITHM 
 
if isempty(x) 
    x = linspace(xMin,xMax,101)';     
end 
  
if any(x < xMin) || any(x > xMax) 
warning(['x out-of-range (the support): ', ... 
        '[xMin, xMax] = [',num2str(xMin),... 
        ', ',num2str(xMax),'] !']); 
end 
  
 [n,m]   = size(x); 
x       = x(:); 
E       = exp(-1i*x*t'); 
 
% CDF  
cdf     = (xMean - x)/2 + imag(E * (cft ./ t)); 
cdf     = 0.5 - (cdf * dt) / pi; 
cdf     = reshape(max(0,min(1,cdf)),n,m); 
  
% PDF  
pdf     = 0.5 + real(E * cft); 
pdf     = (pdf * dt) / pi; 
pdf     = reshape(max(0,pdf),n,m); 
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APPENDIX B. MATLAB ALGORITHM CF2DISTFFT FOR 
NUMERICAL INVERSION OF THE CHARACTERISTIC 
FUNCTION BASED ON THE FFT ALGORITHM 

 

% QF  
if ~isempty(prob) 
    isPlot = options.isPlot; 
    options.isPlot = false; 
    [n,m]     = size(prob); 
    prob      = prob(:); 
    maxiter   = options.maxiter; 
    crit      = options.crit; 
    qf        = options.qf0; 
    criterion = true; 
    count     = 0; 
    [res,cdfQ,pdfQ] = ... 
    cf2DistGP([],qf,[],options); 
    options = res.options; 
    while criterion 
        count  = count + 1; 
        correction  = (cdfQ - prob) ./ pdfQ; 
        qf = qf - correction; 
        [~,cdfQ,pdfQ] = ...         
        cf2DistGP([],qf,[],options); 
        criterion = any(abs(correction) ... 
            > crit * abs(qf)) ... 
            && max(abs(correction)) ... 
            > crit && count < maxiter; 
    end     
    qf   = reshape(qf,n,m); 
    prob = reshape(prob,n,m); 
    options.isPlot = isPlot; 
else 
    qf = []; 
    count = []; 
    correction =[]; 
end 
  
%% RESULT 
result.cdf          = cdf; 
result.pdf          = pdf; 
result.qf           = qf; 
result.x            = x; 
result.xMean        = xMean; 
result.xStd         = xStd; 
result.xMin         = xMin; 
result.xMax         = xMax; 
result.prob         = prob; 
result.SixSigmaRule = options.SixSigmaRule; 
result.t            = t; 
result.T            = t(end); 
result.dt           = dt; 
result.cf           = cf; 
result.N            = N; 
result.count        = count; 
result.correction   = correction; 
result.options      = options; 
result.tictoc       = toc; 
  
%% PLOT the PDF / CDF 
if length(x)==1, 
    options.isPlot = false; 
end 
if options.isPlot 
    figure 
    plot(x,pdf,'.-') 
    grid 
    title('PDF Specified by the CF') 
    xlabel('x') 
    ylabel('pdf') 
    % 
    figure 
    plot(x,cdf,'.-') 
    grid 
    title('CDF Specified by the CF') 
    xlabel('x') 
    ylabel('cdf') 
end 
end 
 

function [result,cdf,pdf,qf] = ... 
    cf2DistFFT(cfFun,y,prob,options) 
%cf2DistFFT calculates the approximate values  
% of CDF, PDF, and QF by numerical inversion of 
% the characteristic function CF by using the  
% FFT algorithm. 
% 
% SYNTAX: 
%  [result,cdf,pdf,qf] = ... 
%    cf2DistFFT2(cfFun,y,prob,options) 
 
% Viktor Witkovsky (witkovsky@savba.sk) 
% Ver.: 24-Apr-2016 17:12:15 
  
%% CHECK THE INPUT PARAMETERS 
if nargin < 1 
    error('Too few inputs'); 
end 
 
if nargin < 4, options   = []; end 
if nargin < 3, prob      = []; end 
if nargin < 2, y         = []; end 
 
if ~isfield(options,'N') 
    options.N = 2^10; 
end 
N  = options.N; 
 
if ~isfield(options,'SixSigmaRule') 
    options.SixSigmaRule = 6; 
end 
 
if ~isfield(options,'minY') 
    options.minY = []; 
end 
 
if ~isfield(options,'maxY') 
    options.maxY = []; 
end 
 
if ~isfield(options,'isForcedSymmetric') 
    options.isForcedSymmetric = []; 
end 
 
if isempty(options.isForcedSymmetric) 
    isForcedSymmetric = false; 
else 
    isForcedSymmetric = ...   
    options.isForcedSymmetric; 
end 
 
if ~isfield(options,'isZeroSymmetric') 
    options.isZeroSymmetric = []; 
end 
 
if isempty(options.isZeroSymmetric)     
    if isForcedSymmetric 
        isZeroSymmetric = true; 
    else 
        isZeroSymmetric = false; 
    end 
else 
    isZeroSymmetric = options.isZeroSymmetric; 
end 
 
if ~isfield(options,'isPositiveSupport') 
    options.isPositiveSupport = []; 
end 
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if isempty(options.isPositiveSupport) 
    isPositiveSupport = false; 
else  
    isPositiveSupport = ... 
    options.isPositiveSupport; 
end 
 
if ~isfield(options,'isPlot') 
    options.isPlot = true; 
end 
 
if ~isfield(options,'delta') 
    options.tolDiff = 1e-4; 
end 
  
%% MOMENTS AND SUPPORT  
h    = options.tolDiff; 
t    = h*(1:4); 
cf   = cfFun(t); 
meanY = real((-cf(2) + 8*cf(1) – ... 
      8*conj(cf(1))+ conj(cf(2)))/(1i*12*h)); 
m2  = real(-(conj(cf(4)) - 16*conj(cf(3)) + ... 
    64*conj(cf(2)) + 16*conj(cf(1)) - 130 + ... 
    16*cf(1) + 64*cf(2) - 16*cf(3) + ... 
    cf(4))/(144*h^2)); 
stdY = sqrt(m2 - meanY^2); 
A    = meanY - options.SixSigmaRule * stdY; 
B    = meanY + options.SixSigmaRule * stdY; 
  
if isPositiveSupport 
    if A <= 0 && ... 
            isempty(options.isForcedSymmetric) 
        A = max(0,A); 
        isForcedSymmetric = true; 
    elseif A > 0 && ... 
            isempty(options.isForcedSymmetric) 
        isForcedSymmetric = false; 
    end 
end 
  
% Use the specified values (if available) 
if ~isempty(options.minY), A = options.minY; end 
if ~isempty(options.maxY), B = options.maxY; end 
  
% Symmetric support [-B,B] ? 
if isForcedSymmetric || isZeroSymmetric 
    B = options.SixSigmaRule * ... 
        sqrt(stdY^2 + meanY^2); 
    if ~isempty(options.maxY) 
        B = options.maxY; 
    end 
    A  = -B; 
end 
 
%% CHARACTERISTIC FUNCTION CF 
k   = (0:(N-1))'; 
t   = 2*pi * (0.5-N/2+k) / (B-A); 
cf  = cfFun(t(N/2+1:end)); 
cf  = [conj(cf(end:-1:1));cf]; 
 
% CF of the 'SYMETRIZED' distribution 
if isForcedSymmetric 
    cf = real(cf); 
end 
 
%% PDF BY the FFT algorithm 
dy  = (B-A)/N; 
C   = (-1).^((1-1/N)*(A/dy+k))/(B-A); 
D   = (-1).^(-2*(A/(B-A))*k); 
 
pdfFFT = real(C.*fft(D.*cf)); 
cdfFFT = cumsum(pdfFFT*dy); 
yFFT   = A + k * dy; 

if options.isZeroSymmetric 
    cdfFFT = cdfFFT + 0.5 - ... 
        (cdfFFT(N/2+1)+cdfFFT(N/2))/2; 
end 
% SPECIAL TREATMENT for symmetrized distribution 
if isForcedSymmetric 
    pdfFFT = max(0,2*pdfFFT(N/2+1:end)); 
    cdfFFT = cdfFFT + 0.5 - ... 
        (cdfFFT(N/2+1)+cdfFFT(N/2))/2; 
    cdfFFT = min(1, ... 
    max(0,2*cdfFFT(N/2+1:end)-1)); 
    yFFT   = yFFT(N/2+1:end); 
else 
    pdfFFT = max(0,pdfFFT); 
    cdfFFT = min(1,max(0,cdfFFT)); 
end 
yMin = min(yFFT); 
yMax = max(yFFT); 
  
%% INTERPOLATE QUANTILE FUNCTION : QF(prob) 
if isempty(prob) 
    prob = [0.9,0.95,0.975,0.99,0.995,0.999]; 
end 
 
[cdfU,id] = unique(cdfFFT); 
yyU   = yFFT(id); 
szp   = size(prob); 
qfFun = @(prob) interp1([-eps;cdfU],... 
    [-eps;yyU+dy/2],prob); 
qf    = reshape(qfFun(prob),szp); 
  
% INTERPOLATE CDF/QF/PDF 
if isempty(y) 
    y = linspace(A,A+(N-1)*dy,100); 
end 
 
szy    = size(y); 
cdfFun = @(x) interp1([-eps;yyU+dy/2],... 
    [-eps;cdfU],x(:)); 
cdf    = reshape(cdfFun(y),szy); 
  
try 
    pdfFun = @(x) interp1(yFFT,pdfFFT,y(:)); 
    pdf    = reshape(pdfFun(y),szy); 
catch 
    warning('Unable to interpolate') 
    pdf = NaN*y; 
    pdfFun = []; 
end 
 
%% RESULT 
result.y               = y; 
result.cdf             = cdf; 
result.pdf             = pdf; 
result.prob            = prob; 
result.quant           = qf; 
result.cdfFun          = cdfFun; 
result.pdfFun          = pdfFun; 
result.qfFun           = qfFun; 
result.yMin            = yMin; 
result.yMax            = yMax; 
result.cdfMin          = min(cdfFFT); 
result.cdfMax          = max(cdfFFT); 
result.N               = N; 
result.Details.yFTT    = yFFT; 
result.Details.pdfFFT  = pdfFFT; 
result.Details.cdfFFT  = cdfFFT; 
result.Details.meanY    = meanY; 
result.Details.stdY     = stdY; 
result.Details.A       = A; 
result.Details.B       = B; 
result.Details.dy      = dy; 
result.Details.dt      = 2*pi/(B-A); 
result.Details.t       = t; 
result.Details.cf      = cf; 
result.Details.cfFun   = cfFun; 
result.options         = options; 
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